Suppr超能文献

在九种头影测量分析中,Holdaway分析与面部轮廓吸引力的相关性最高。

Holdaway analysis exhibits the highest correlation with facial profile attractiveness among nine cephalometric analyses.

作者信息

Ren Hongyu, Chen Xin, Zhang Yongqing

机构信息

Department of Orthodontics, Xiangyang Stomatological Hospital, Affiliated Stomatological Hospital of Hubei University of Arts and Science Xiangyang, Hubei, China.

出版信息

Am J Transl Res. 2025 Aug 15;17(8):6236-6249. doi: 10.62347/JSWV8973. eCollection 2025.

Abstract

OBJECTIVE

To investigate the correlation between nine commonly used cephalometric analyses and facial profile attractiveness and to explore an optimized combination of cephalometric measures.

METHODS

Sixteen nonprofessional evaluators assessed the profile attractiveness of 210 untreated Chinese adults using a visual analog scale. Eighty-seven cephalometric measures were obtained from nine analyses (Burstone, Downs, Holdaway, Jarabak, McNamara, Ricketts, Steiner, Tweed, and Wylie). Quadratic regression analysis was employed to identify measures significantly correlated with facial profile attractiveness and to calculate their maximum attractiveness values (MAVs). Stepwise regression was applied to assess the explanatory power of each analysis for profile attractiveness and to construct optimized predictive models.

RESULTS

The explanatory power of the nine analyses for attractiveness variation was ranked as follows: Holdaway (41.5%) > Ricketts (37.6%) > Steiner (36.8%) > Burstone (35.7%) > Tweed (35.6%) > Downs (33.9%) > McNamara (24.3%) > Wylie (13.2%) > Jarabak (6.1%). Among individual measures, the H-angle, ANB (°), A-Npog (mm), and NA-APo (°) accounted for more than 26% of attractiveness variation. A five-indicator model comprising H-angle (28.8%; MAV = 17.2°), L1-APog (14.6%; MAV = 0.5 mm), Wits appraisal (4.5%; MAV = 0.1 mm), ANS-Me/N-Me (4.2%; MAV = 54%), and ANS-Ptm (3.3%; MAV = 46.7 mm) explained 55.4% of the variation.

CONCLUSION

Among the nine cephalometric analyses, the Holdaway method exhibited the strongest explanatory power for variation in profile attractiveness. The newly constructed five-indicator model may provide more precise aesthetic references for orthodontic and orthognathic treatments.

摘要

目的

探讨九种常用头影测量分析方法与面部侧貌吸引力之间的相关性,并探索头影测量指标的优化组合。

方法

16名非专业评估者使用视觉模拟量表对210名未经治疗的中国成年人的侧貌吸引力进行评估。从九种分析方法(Burstone、Downs、Holdaway、Jarabak、McNamara、Ricketts、Steiner、Tweed和Wylie)中获取87项头影测量指标。采用二次回归分析确定与面部侧貌吸引力显著相关的指标,并计算其最大吸引力值(MAV)。应用逐步回归评估每种分析方法对侧貌吸引力的解释力,并构建优化预测模型。

结果

九种分析方法对吸引力变化的解释力排序如下:Holdaway(41.5%)>Ricketts(37.6%)>Steiner(36.8%)>Burstone(35.7%)>Tweed(35.6%)>Downs(33.9%)>McNamara(24.3%)>Wylie(13.2%)>Jarabak(6.1%)。在个体指标中,H角、ANB(°)、A-Npog(mm)和NA-APo(°)占吸引力变化的比例超过26%。由H角(28.8%;MAV = 17.2°)、L1-APog(14.6%;MAV = 0.5 mm)、Wits值(4.5%;MAV = 0.1 mm)、ANS-Me/N-Me(4.2%;MAV = 54%)和ANS-Ptm(3.3%;MAV = 46.7 mm)组成的五指标模型解释了55.4%的变化。

结论

在九种头影测量分析方法中,Holdaway方法对侧貌吸引力变化的解释力最强。新构建的五指标模型可为正畸和正颌治疗提供更精确的美学参考。

相似文献

本文引用的文献

7
Cephalometric determinants of facial attractiveness: A quadratic correlation study.面部吸引力的头影测量决定因素:一项二次相关性研究。
Am J Orthod Dentofacial Orthop. 2023 Mar;163(3):398-406. doi: 10.1016/j.ajodo.2021.12.025. Epub 2022 Dec 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验