Balderas-González María Eugenia, Cruz-Hervert Luis Pablo, Martínez-Contreras Silvia Paulina, García-Lee Valentina, Ortiz-Sánchez José David, Rodríguez-Chávez Jacqueline Adelina, Jiménez-Corona María Eugenia, García-García Gisel, Kiseri-Kubati Jeta, Sánchez-García Sergio
Orthodontics, Universidad Cuauhtémoc, San Luis Potosí, MEX.
Division of Graduate Studies and Research, Faculty of Dentistry, Universidad Nacional Autónoma de México, Mexico City, MEX.
Cureus. 2025 Jul 13;17(7):e87864. doi: 10.7759/cureus.87864. eCollection 2025 Jul.
Introduction The cephalometric norm of the mandibular corpus length (MCL) or the one-to-one ratio of the MCL to the anterior cranial base length (ACBL) are cephalometric indicators with unknown predictive capacity and clinical utility. Multivariate regression models enable the use of two or more variables to estimate an expected value, in this case, for MCL. This study compares three approaches to predicting MCL in adults by applying Björk-Jarabak measurements: (i) conventional angular norms, which have limited standalone value; (ii) simple linear-proportion indices of craniofacial structures; and (iii) a multivariate model that integrates both linear and angular measurements. Methods A cross-sectional study was conducted using 100 adult cone beam computed tomography (CBCT) scans (63% female, mean age 29.5 ± 8.4 years) who met strict inclusion criteria. Seven simple linear regression models were analyzed for individual cephalometric variables: ACBL, posterior cranial base length (PCBL), ramus height (RH), saddle angle (SA), articular angle (AA) and gonial angle (Gon), and cephalometric norm adjusted for sex and age. Subsequently, a comprehensive multivariate model was developed. Regression coefficients (β), 95% confidence intervals (95% CI), and determination coefficients (R²) were reported for each model. Results Linear measurements revealed a statistically significant association with MCL: anterior cranial length (β = 0.86; 95% CI: 0.72-0.99; R² = 0.6462), posterior cranial length (β = 1.16; 95% CI: 0.92-1.40; R² = 0.5331), and RH (β = 0.84; 95% CI: 0.68-0.99; R² = 0.5757). In contrast, the cephalometric norm had low explanatory power (β = 4.72; 95% CI: -0.47--9.93; R² = 0.1091), and the angular measurements were not significant. The final multivariate model, including the three linear variables, showed a superior predictive capacity (R² = 0.8689), with the following coefficients: ACBL (β = 0.41), PCBL (β = 0.49), RH (β = 0.20), and Gon (β = -0.18; all p <0.01). Conclusion These findings suggest that linear craniofacial measurements have greater predictive capacity for the MCL than do norms or angles. The multivariate model increased the explanatory capacity by 22.27% relative to the best individual model. The integration of these variables allows more precise and personalized estimates in adults. The use of multivariate models in MCL clinical practice and their validation in other populations is recommended.
引言 下颌骨体长(MCL)的头影测量标准或MCL与前颅底长度(ACBL)的一对一比例是预测能力和临床效用未知的头影测量指标。多元回归模型能够使用两个或更多变量来估计期望值,在本研究中即用于估计MCL。本研究通过应用比约克-雅拉巴克测量法比较三种预测成人MCL的方法:(i)传统角度标准,其独立价值有限;(ii)颅面结构的简单线性比例指数;(iii)整合线性和角度测量的多元模型。方法 采用横断面研究,使用100例符合严格纳入标准的成人锥形束计算机断层扫描(CBCT)图像(63%为女性,平均年龄29.5±8.4岁)。分析了七个关于个体头影测量变量的简单线性回归模型:ACBL、后颅底长度(PCBL)、升支高度(RH)、鞍角(SA)、关节角(AA)和下颌角(Gon),以及根据性别和年龄调整的头影测量标准。随后,建立了一个综合多元模型。报告了每个模型的回归系数(β)、95%置信区间(95%CI)和决定系数(R²)。结果 线性测量显示与MCL有统计学显著关联:前颅长度(β = 0.86;95%CI:0.72 - 0.99;R² = 0.6462)、后颅长度(β = 1.16;95%CI:0.92 - 1.40;R² = 0.5331)和RH(β = 0.84;95%CI:0.68 - 0.99;R² = 0.5757)。相比之下,头影测量标准的解释力较低(β = 4.72;95%CI: - 0.47 - - 9.93;R² = 0.1091),角度测量不显著。最终的多元模型包括三个线性变量,显示出更高的预测能力(R² = 0.8689),系数如下:ACBL(β = 0.41)、PCBL(β = 0.49)、RH(β = 0.20)和Gon(β = - 0.18;均p <0.01)。结论 这些发现表明,颅面线性测量对MCL的预测能力比标准或角度更强。多元模型相对于最佳个体模型的解释能力提高了22.27%。这些变量的整合使得在成人中能够进行更精确和个性化的估计。建议在MCL临床实践中使用多元模型并在其他人群中进行验证。