Ghimire Santosh R, Wolfe Kurt, Johnston John M, Kraemer Stephen R, Blaskey Dylan, Lindquist Alan
U.S. Environmental Protection Agency, Office of Research and Development, Athens, Georgia 30605, United States.
U.S. Environmental Protection Agency, Office of Research and Development, San Francisco, California 94105, United States.
ACS ES T Water. 2025 Aug 8;5(8):4404-4414. doi: 10.1021/acsestwater.5c00046.
We present a methodology for creating a roof rainwater harvesting (RWH) contaminant sensing-recording-grading (SRG) system comprising hardware and software components like low-cost sensors, a solar-powered data logger, a publicly available Arduino Integrated Development Environment (IDE) software, and smart mobile and web applications for data retrieval. We illustrate the prototype SRG system designed for monitoring basic roof-RWH quality parameters (i.e., electrical conductivity (S/cm), temperature (°C), and depth (mm)) with a temporal frequency of 15 min from February to August 2024 in a rain barrel receiving rooftop runoff from a U.S. Environmental Protection Agency (EPA) building located in Georgia, USA. We established data validation protocols and verified the performance of the sensors by using an alternative set of sensors. We performed minimal data filling and comparable data cleaning for intermittent data gaps, which were partly attributed to extreme weather conditions or hardware or software issues. Analysis of the cleaned data set showed a robust performance of the tested sensors comparable to the validation sensor, with strong Pearson correlation coefficients between the two sensors' conductivity (0.99) and temperature measurements (1.00) and similar data spreads and mean values. The clean data analysis also showed that the RWH conductivity ranged from 7 to 116 S/cm, the temperature ranged from 5 to 29 °C, and the depth ranged from 29 to 838 mm, from February to August 2024.
我们提出了一种用于创建屋顶雨水收集(RWH)污染物传感 - 记录 - 分级(SRG)系统的方法,该系统包括硬件和软件组件,如低成本传感器、太阳能数据记录器、公开可用的Arduino集成开发环境(IDE)软件以及用于数据检索的智能移动和网络应用程序。我们展示了为监测基本屋顶雨水收集质量参数(即电导率(S/cm)、温度(°C)和深度(mm))而设计的SRG原型系统,该系统于2024年2月至8月在美国佐治亚州一座接收美国环境保护局(EPA)大楼屋顶径流的雨水桶中,以15分钟的时间频率进行监测。我们建立了数据验证协议,并通过使用另一组传感器来验证传感器的性能。对于间歇性数据间隙,我们进行了最少的数据填充和可比的数据清理,这些间隙部分归因于极端天气条件或硬件或软件问题。对清理后的数据集的分析表明,测试传感器的性能与验证传感器相当,两个传感器的电导率(0.99)和温度测量值(1.00)之间具有很强的皮尔逊相关系数,并且数据分布和平均值相似。清理后数据分析还表明,2024年2月至8月期间,屋顶雨水收集的电导率范围为7至116 S/cm,温度范围为5至29 °C,深度范围为29至838 mm。