Suppr超能文献

同期多中心原发性肺癌电视辅助胸腔镜手术后静脉血栓栓塞症风险预测模型的构建与验证

Construction and validation of a risk prediction model for venous thromboembolism post-VATS in simultaneous multicentric primary lung cancers.

作者信息

Tang Lili, Wang Kai, Peng Huanzhi, He Yuexia, Tang Li, Liu Quanxing

机构信息

Department of Thoracic Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China.

出版信息

J Thorac Dis. 2025 Aug 31;17(8):5856-5869. doi: 10.21037/jtd-2025-558. Epub 2025 Aug 28.

Abstract

BACKGROUND

Synchronous multiple primary lung cancers (sMPLCs) represent 0.8% to 20% of new lung cancer diagnoses. Currently, there is a lack of risk prediction models for venous thromboembolism (VTE) after video-assisted thoracoscopic surgery (VATS) in sMPLC patients. This study seeks to create and validate a VTE risk prediction model tailored for sMPLC patients undergoing VATS.

METHODS

A retrospective cohort analysis was conducted on patients who underwent lung cancer resection from November 2017 to December 2024 using Hospital Information System (HIS), telephone follow-up, and the Questionnaire Star electronic questionnaire. Categorical variables were analyzed using χ tests and continuous variables were assessed with -tests for univariate analysis. Variables with statistical significance from the univariate analysis and the least absolute shrinkage and selection operator (LASSO) regression algorithm were included in the logistic regression analysis to identify risk factors and construct the prediction model. A nomogram was used for the visualization of the model. The discriminative ability and calibration of the model were evaluated using the area under the receiver operating characteristic (ROC) curve and calibration plots, respectively. The clinical utility of the model was assessed using decision curve analysis.

RESULTS

The occurrence of VTE post-VATS in patients with sMPLC was associated with age, smoking history, coronary artery disease, cerebrovascular disease, chronic obstructive pulmonary disease (COPD), atherosclerotic plaques in the extremities, surgical method, intraoperative transfusion, Postoperative Caprini score, and the number of primary lesions (P<0.05). The area under the ROC curve was 0.917 [95% confidence interval (CI): 0.894-0.941], with a sensitivity of 0.885 and a specificity of 0.818. The calibration curve demonstrated a good fit between the observed and predicted curves, with a mean absolute error of 0.008. The clinical decision curve analysis indicated that the model offered superior clinical benefits compared to the Caprini score.

CONCLUSIONS

The prediction model constructed in this study exhibits robust predictive performance, providing a theoretical basis for clinical medical staff to identify high-risk groups of patients with sMPLC who may develop VTE after VATS at an early stage and to facilitate timely interventions.

摘要

背景

同步性多原发性肺癌(sMPLC)占新发肺癌诊断病例的0.8%至20%。目前,缺乏针对sMPLC患者行电视辅助胸腔镜手术(VATS)后静脉血栓栓塞症(VTE)的风险预测模型。本研究旨在创建并验证一个针对接受VATS的sMPLC患者的VTE风险预测模型。

方法

对2017年11月至2024年12月期间接受肺癌切除术的患者进行回顾性队列分析,使用医院信息系统(HIS)、电话随访和问卷星电子问卷。分类变量采用χ检验分析,连续变量采用t检验进行单因素分析。将单因素分析中有统计学意义的变量和最小绝对收缩和选择算子(LASSO)回归算法纳入逻辑回归分析,以识别危险因素并构建预测模型。使用列线图对模型进行可视化。分别采用受试者操作特征(ROC)曲线下面积和校准图评估模型的判别能力和校准情况。使用决策曲线分析评估模型的临床实用性。

结果

sMPLC患者VATS术后VTE的发生与年龄、吸烟史、冠状动脉疾病、脑血管疾病、慢性阻塞性肺疾病(COPD)、四肢动脉粥样硬化斑块、手术方式、术中输血、术后Caprini评分和原发灶数量有关(P<0.05)。ROC曲线下面积为0.917 [95%置信区间(CI):0.894 - 0.941],灵敏度为0.885,特异度为0.818。校准曲线显示观察曲线与预测曲线拟合良好,平均绝对误差为0.008。临床决策曲线分析表明,该模型比Caprini评分具有更好的临床效益。

结论

本研究构建的预测模型具有强大的预测性能,为临床医务人员早期识别sMPLC患者中VATS术后可能发生VTE的高危人群并及时进行干预提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c37/12433111/487f8bb8714b/jtd-17-08-5856-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验