Suppr超能文献

一种预测非小细胞肺癌纵隔淋巴结转移的新型列线图:一项回顾性分析

A novel nomogram for predicting mediastinal lymph node metastasis in non-small cell lung cancer: a retrospective analysis.

作者信息

Mei Jialin, Zhang Bing, Zhu Yongyue, Chen Lei, Yang Dingping, Lin Tao, Gao Fei, Yin Defu, Li Gaofeng

机构信息

Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Dali University (Baoshan People's Hospital), Baoshan, China.

Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Hospital of Peking University Cancer Hospital (Yunnan Tumor Hospital), Kunming, China.

出版信息

J Thorac Dis. 2025 Aug 31;17(8):5803-5815. doi: 10.21037/jtd-2025-701. Epub 2025 Aug 23.

Abstract

BACKGROUND

Accurate assessment of lymph node metastasis (LNM) is crucial for preoperative staging and treatment planning in patients with lung cancer. While previous research has explored LNM risk in non-small cell lung cancer (NSCLC), clinical validation of multifactorial predictive models is lacking. This study aimed to develop and validate a dynamic nomogram for predicting LNM in NSCLC patients.

METHODS

We retrospectively analysed 619 NSCLC patients and divided them into training (70%) and validation (30%) groups. Univariate and multivariate ordinal logistic regression analyses identified predictive factors for LNM. Variables were selected via least absolute shrinkage and selection operator (LASSO) regression. A dynamic nomogram was developed on the basis of logistic regression results, and its performance was evaluated through receiver operating characteristic (ROC) curve analysis, calibration plots, and decision curve analysis (DCA). The model was further validated with 1,000 bootstrap resamples.

RESULTS

Independent predictors of LNM were ferritin, carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA199), EGFR exon 19 deletion, tumor size, and tumor location. The nomogram exhibited excellent discriminative ability, with an area under the ROC curve (AUC) of 0.846 in the training group and 0.828 in the validation group. DCA indicated greater net benefits across various LNM risk thresholds.

CONCLUSIONS

This study presents a dynamic nomogram that integrates EGFR exon 19 deletion and serum ferritin levels, enhancing preoperative staging and aiding treatment decisions for NSCLC patients.

摘要

背景

准确评估淋巴结转移(LNM)对于肺癌患者的术前分期和治疗规划至关重要。虽然先前的研究已经探讨了非小细胞肺癌(NSCLC)中LNM的风险,但缺乏多因素预测模型的临床验证。本研究旨在开发并验证一种用于预测NSCLC患者LNM的动态列线图。

方法

我们回顾性分析了619例NSCLC患者,并将他们分为训练组(70%)和验证组(30%)。单因素和多因素有序逻辑回归分析确定了LNM的预测因素。通过最小绝对收缩和选择算子(LASSO)回归选择变量。基于逻辑回归结果开发了动态列线图,并通过受试者操作特征(ROC)曲线分析、校准图和决策曲线分析(DCA)评估其性能。该模型通过1000次自抽样重采样进一步验证。

结果

LNM的独立预测因素为铁蛋白、糖类抗原125(CA125)、癌胚抗原(CEA)、糖类抗原199(CA199)、表皮生长因子受体(EGFR)外显子19缺失、肿瘤大小和肿瘤位置。列线图显示出优异的鉴别能力,训练组的ROC曲线下面积(AUC)为0.846,验证组为0.828。DCA表明在各种LNM风险阈值下具有更大的净效益。

结论

本研究提出了一种整合EGFR外显子19缺失和血清铁蛋白水平的动态列线图,可改善NSCLC患者的术前分期并辅助治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de5b/12433079/2c2ee5cb471c/jtd-17-08-5803-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验