Du Mingyang, Chen Jincheng, Wang Chaogang, Jiang Zhuxiang, Wang Min, Pang Meiqian, Bu Tian, Cong Rihao, Wang Wei, Zhang Guofan, Li Li
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS) Institute of Oceanology, Chinese Academy of Sciences Qingdao China.
Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center Qingdao China.
Evol Appl. 2025 Sep 13;18(9):e70156. doi: 10.1111/eva.70156. eCollection 2025 Sep.
Extreme climatic temperature stress induced by global warming poses a severe threat to the survival of marine invertebrates. The plasma membrane functions as a natural barrier and serves as the first responder to ambient temperature through dynamic modulation of its fluidity. However, the adaptive mechanisms of membrane lipid remodeling in response to temperature fluctuations remain poorly understood in marine organisms. Oysters, the most widely cultivated shellfish globally, hold significant economic and ecological importance. We characterized the changes in plasma membrane lipid composition of two congeneric oyster species-the northern/cold-adapted and the southern/warm-adapted -under short-term acute heat and cold stress, including changes in lipid subclass content, glycerophospholipid acyl chain length, and glycerophospholipid unsaturation. Our results revealed sphingolipids and sterol lipids content may play a more critical role in short-term temperature adaptation, while glycerophospholipid alterations may prioritize dynamic lipid modifications over abundance changes. Notably, the relatively cold tolerant exhibited higher lipid unsaturation and shorter acyl chain lengths, with a preferential modulation of glycerophospholipid acyl chain length, while the heat tolerant regulated fatty acid unsaturation to maintain membrane fluidity for temperature adaptation. Divergent membrane lipid remodeling strategies in two congeneric oysters provide new insights into the adaptation mechanisms of membrane fluidity in marine organisms, informing risk assessment for aquaculture industries under global warming. The identification of key components such as phosphatidylethanolamine, sphingosine, ceramide phosphates, and cold and heat adapted lipid molecules provides important biomarkers for predicting the adaptive potential of marine organisms to future extreme climate.
全球变暖引发的极端气候温度胁迫对海洋无脊椎动物的生存构成了严重威胁。质膜作为一道天然屏障,通过动态调节其流动性,作为对环境温度的第一响应者。然而,在海洋生物中,膜脂重塑响应温度波动的适应性机制仍知之甚少。牡蛎是全球养殖最广泛的贝类,具有重要的经济和生态意义。我们表征了两种同属牡蛎物种——北方/适应寒冷的和南方/适应温暖的——在短期急性热应激和冷应激下质膜脂质组成的变化,包括脂质亚类含量、甘油磷脂酰基链长度和甘油磷脂不饱和度的变化。我们的结果表明,鞘脂和甾醇脂质含量可能在短期温度适应中发挥更关键的作用,而甘油磷脂的变化可能优先考虑动态脂质修饰而非丰度变化。值得注意的是,相对耐寒的牡蛎表现出更高的脂质不饱和度和更短的酰基链长度,优先调节甘油磷脂酰基链长度,而耐热的牡蛎则调节脂肪酸不饱和度以维持膜流动性以适应温度。两种同属牡蛎不同的膜脂重塑策略为海洋生物膜流动性的适应机制提供了新见解,为全球变暖下水产养殖业的风险评估提供了依据。磷脂酰乙醇胺、鞘氨醇、神经酰胺磷酸盐以及适应寒冷和炎热的脂质分子等关键成分的鉴定为预测海洋生物对未来极端气候的适应潜力提供了重要的生物标志物。