Suppr超能文献

一种在非靶向液相色谱-高分辨质谱方法开发中利用物理化学和结构数据进行化合物选择的新型化学空间依赖策略。

A Novel Chemical-Space-Dependent Strategy for Compound Selection in Non-target LC-HRMS Method Development Using Physicochemical and Structural Data.

作者信息

Renai Lapo, Turkina Viktoriia, Hulleman Tobias, Nikolopoulos Alexandros, Gargano Andrea F G, Amato Elvio D, Del Bubba Massimo, Samanipour Saer

机构信息

Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, The Netherlands.

Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.

出版信息

Environ Sci Technol Lett. 2025 Aug 18;12(9):1162-1168. doi: 10.1021/acs.estlett.5c00759. eCollection 2025 Sep 9.

Abstract

The virtual chemical space of substances, including emerging contaminants relevant to the environment and exposome, is rapidly expanding. Non-targeted analysis (NTA) by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is useful in measuring broad chemical space regions. Internal standards are typically used to optimize the selectivity and sensitivity of NTA LC-HRMS methods, assuming a linear relationship between structure and behavior across all analytes. However, this assumption fails for large, heterogeneous chemical spaces, narrowing measurable coverage to structurally similar compounds. We present a data-driven strategy for unbiased sampling of candidate structures for NTA LC-HRMS method development from extensive chemical spaces, such as the U.S. EPA's CompTox (>1 million chemicals). The workflow maximizes physicochemical/structural diversity using precomputed PubChem descriptors (e.g., molecular weight, XLogP) and grants LC-HRMS compatibility thanks to predicted mobility and ionization efficiency from molecular fingerprints. The resulting measurable compound lists (MCLs) provide broad, heterogeneous coverage for NTA method development, validation, and boundary assessment. Applied to the CompTox space, the approach yielded MCLs with greater chemical coverage and broader predicted LC-HRMS applicability than conventional "watch list" contaminants, offering a robust framework for enhancing NTA's measurable chemical space while preserving diversity.

摘要

包括与环境和暴露组相关的新兴污染物在内的物质虚拟化学空间正在迅速扩大。液相色谱-高分辨率质谱法(LC-HRMS)进行的非靶向分析(NTA)有助于测量广泛的化学空间区域。通常使用内标来优化NTA LC-HRMS方法的选择性和灵敏度,前提是所有分析物的结构与行为之间存在线性关系。然而,对于庞大且异质的化学空间,这一假设并不成立,从而将可测量的范围缩小到结构相似的化合物。我们提出了一种数据驱动策略,用于从广泛的化学空间(如美国环保署的CompTox(超过100万种化学品))中无偏采样NTA LC-HRMS方法开发的候选结构。该工作流程使用预先计算的PubChem描述符(如分子量、XLogP)最大化物理化学/结构多样性,并通过分子指纹预测的迁移率和电离效率实现LC-HRMS兼容性。由此产生的可测量化合物列表(MCL)为NTA方法的开发、验证和边界评估提供了广泛的、异质的覆盖范围。应用于CompTox空间时,该方法产生的MCL比传统的“观察名单”污染物具有更大的化学覆盖范围和更广泛的预测LC-HRMS适用性,为扩大NTA可测量的化学空间同时保持多样性提供了一个强大的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/730d/12424467/94b5cb128826/ez5c00759_0001.jpg

相似文献

1
A Novel Chemical-Space-Dependent Strategy for Compound Selection in Non-target LC-HRMS Method Development Using Physicochemical and Structural Data.
Environ Sci Technol Lett. 2025 Aug 18;12(9):1162-1168. doi: 10.1021/acs.estlett.5c00759. eCollection 2025 Sep 9.
2
An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry.
Exposome. 2022 Aug 25;2(1):osac007. doi: 10.1093/exposome/osac007. eCollection 2022.
3
Examining structure-based surrogate selection for quantitative non-targeted analysis.
Anal Bioanal Chem. 2025 Jun 9. doi: 10.1007/s00216-025-05919-8.
5
Prioritizing Chemical Candidates from Non-targeted Analysis Using Metadata, Spectral Similarity, and Hazard Scoring within INTERPRET NTA.
Anal Chem. 2025 Jul 29;97(29):15904-15912. doi: 10.1021/acs.analchem.5c02223. Epub 2025 Jul 16.
8
Chemical exposomics in biobanked plasma samples and associations with breast cancer risk factors.
J Expo Sci Environ Epidemiol. 2024 Dec 6. doi: 10.1038/s41370-024-00736-0.

本文引用的文献

1
Active Learning Improves Ionization Efficiency Predictions and Quantification in Nontargeted LC/HRMS.
Anal Chem. 2025 Jul 1;97(25):13131-13139. doi: 10.1021/acs.analchem.5c00816. Epub 2025 Jun 13.
3
Chemical space as a unifying theme for chemistry.
J Cheminform. 2025 Jan 16;17(1):6. doi: 10.1186/s13321-025-00954-0.
4
Exploring the Chemical Space of the Exposome: How Far Have We Gone?
JACS Au. 2024 Jun 20;4(7):2412-2425. doi: 10.1021/jacsau.4c00220. eCollection 2024 Jul 22.
5
Exploring the chemical subspace of RPLC: A data driven approach.
Anal Chim Acta. 2024 Aug 15;1317:342869. doi: 10.1016/j.aca.2024.342869. Epub 2024 Jun 20.
6
High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage.
Environ Sci Technol. 2024 Jul 23;58(29):12784-12822. doi: 10.1021/acs.est.4c01156. Epub 2024 Jul 10.
7
RepoRT: a comprehensive repository for small molecule retention times.
Nat Methods. 2024 Feb;21(2):153-155. doi: 10.1038/s41592-023-02143-z.
8
Critical Assessment of the Chemical Space Covered by LC-HRMS Non-Targeted Analysis.
Environ Sci Technol. 2023 Sep 26;57(38):14101-14112. doi: 10.1021/acs.est.3c03606. Epub 2023 Sep 13.
9
Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome.
J Expo Sci Environ Epidemiol. 2023 Jul;33(4):524-536. doi: 10.1038/s41370-023-00574-6. Epub 2023 Jun 28.
10
Nontarget Analysis of Polluted Surface Waters in Bangladesh Using Open Science Workflows.
Environ Sci Technol. 2023 May 2;57(17):6808-6824. doi: 10.1021/acs.est.2c08200. Epub 2023 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验