Limoncella Giorgio, Feurer Denise, Roye Dominic, de Hoogh Kees, de la Cruz Arturo, Gasparrini Antonio, Schneider Rochelle, Pirotti Francesco, Catelan Dolores, Stafoggia Massimo, de'Donato Francesca, Biscardi Giulio, Marzi Chiara, Baccini Michela, Sera Francesco
Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, 50134 Florence, Italy.
Unit of Biostatistics, Epidemiology and Public Health (UBEP), University of Padua, 35131 Padua, Italy.
Remote Sens (Basel). 2025 Sep 2;17(17):3052. doi: 10.3390/rs17173052.
Heat-related morbidity and mortality are increasing due to climate change, emphasizing the need to identify vulnerable areas and people exposed to extreme temperatures. To improve heat stress impact assessment, we developed a replicable machine learning model that integrates remote sensing, ground station, and geospatial data to estimate daily air temperature at a spatial resolution of 100 m 100 m across the region of Tuscany, Italy. Using a two-stage approach, we first imputed missing land surface temperature data from MODIS using gradient-boosted trees and spatio-temporal predictors. Then, we modeled daily maximum and minimum air temperatures by incorporating monitoring station observations, satellite-derived data (MODIS, Landsat 8), topography, land cover, meteorological variables (ERA5-land), and vegetation indices (NDVI). The model achieved high predictive accuracy, with R values of 0.95 for Tmax and 0.92 for Tmin, and root mean square errors (RMSE) of 1.95 °C and 1.96 °C, respectively. It effectively captured both temporal (R: 0.95; 0.94) and spatial (R: 0.92; 0.72) temperature variations, allowing for the creation of high-resolution maps. These results highlight the potential of integrating Earth Observation and machine learning to generate high-resolution temperature maps, offering valuable insights for urban planning, climate adaptation, and epidemiological studies on heat-related health effects.
由于气候变化,与高温相关的发病率和死亡率正在上升,这凸显了识别暴露于极端温度下的脆弱地区和人群的必要性。为了改进热应激影响评估,我们开发了一种可复制的机器学习模型,该模型整合了遥感、地面站和地理空间数据,以意大利托斯卡纳地区100米×100米的空间分辨率估算每日气温。我们采用两阶段方法,首先使用梯度提升树和时空预测器插补来自中分辨率成像光谱仪(MODIS)的缺失陆地表面温度数据。然后,我们通过纳入监测站观测数据、卫星衍生数据(MODIS、陆地卫星8号)、地形、土地覆盖、气象变量(ERA5-land)和植被指数(归一化植被指数,NDVI),对每日最高和最低气温进行建模。该模型具有较高的预测精度,最高气温(Tmax)的R值为0.95,最低气温(Tmin)的R值为0.92,均方根误差(RMSE)分别为1.95℃和1.96℃。它有效地捕捉了时间(R:0.95;0.94)和空间(R:0.92;0.72)的温度变化,从而能够创建高分辨率地图。这些结果突出了整合地球观测和机器学习以生成高分辨率温度地图的潜力,为城市规划、气候适应以及与高温相关健康影响的流行病学研究提供了有价值的见解。