Suganthi Chennakesavan, Akshayaa Parthiban, Sengupta Tanusree, Manoj Narayanan
Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India.
Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Tamil Nadu, 603103, India.
J Mol Evol. 2025 Sep 15. doi: 10.1007/s00239-025-10267-3.
Serpins, characterized by a conserved structural fold, serve diverse biological roles. Protein Z-dependent protease inhibitor (ZPI), a serpin superfamily member, acts as an endogenous anticoagulant by inhibiting clotting factors Xa (fXa) and XIa (fXIa). Beyond anticoagulation, ZPI has roles in inflammation, cancer, and immune regulation. However, its exact pathophysiological role is yet to be fully characterized. To elucidate ZPI's evolutionary trajectory and non-haemostatic roles, we conducted a comprehensive phylogenetic analysis integrating sequence, gene structure, and synteny data. We identified a lamprey-specific serpin, ZPIL_AGTL_PMA, containing both an inhibitory reactive center loop (RCL) and an angiotensin II (Ang II) motif. This finding suggests that ZPIL_AGTL_PMA represents an ancestral bifunctional serpin from which ZPI and angiotensinogen (AGT), a non-inhibitory serpin involved in blood pressure regulation, evolved by sub-functionalization in jawed vertebrates. This bifunctionality within a single gene in lamprey likely reflects an ancestral vertebrate trait. Gene cluster analyses showed serpinA10 (ZPI) as possibly the earliest member, with other Clade A serpins arising via subsequent duplication. The chromosomal location of this gene cluster is conserved in most vertebrates, except Carnivores and Suidea. Sequence analysis indicated potential non-inhibitory ZPI variants in certain species with atypical non-serine residues at the P1' position within its RCL, a critical determinant of inhibitory serpin activity. The close evolutionary relationship between ZPI and AGT further suggests mechanistic interplay between coagulation and blood pressure regulation, highlighting shared regulatory pathways involving these serpins. Together, these findings expand the functional landscape of ZPI and underscore the dynamic evolution of serpin-mediated physiological processes.
丝氨酸蛋白酶抑制剂(Serpins)具有保守的结构折叠,发挥着多种生物学作用。蛋白Z依赖性蛋白酶抑制剂(ZPI)是丝氨酸蛋白酶抑制剂超家族的成员,通过抑制凝血因子Xa(fXa)和XIa(fXIa)发挥内源性抗凝作用。除了抗凝作用外,ZPI还在炎症、癌症和免疫调节中发挥作用。然而,其确切的病理生理作用尚未完全明确。为了阐明ZPI的进化轨迹和非止血作用,我们进行了一项综合系统发育分析,整合了序列、基因结构和共线性数据。我们鉴定出一种七鳃鳗特有的丝氨酸蛋白酶抑制剂,即ZPIL_AGTL_PMA,它同时包含一个抑制性反应中心环(RCL)和一个血管紧张素II(Ang II)基序。这一发现表明,ZPIL_AGTL_PMA代表了一种祖先双功能丝氨酸蛋白酶抑制剂,在有颌脊椎动物中,ZPI和血管紧张素原(AGT,一种参与血压调节的非抑制性丝氨酸蛋白酶抑制剂)通过亚功能化从该祖先双功能丝氨酸蛋白酶抑制剂进化而来。七鳃鳗单个基因内的这种双功能性可能反映了祖先脊椎动物的特征。基因簇分析表明,丝氨酸蛋白酶抑制剂A10(ZPI)可能是最早的成员,其他A类丝氨酸蛋白酶抑制剂是通过随后的复制产生的。除了食肉动物和猪科动物外,该基因簇的染色体位置在大多数脊椎动物中是保守的。序列分析表明,在某些物种中,其RCL内P1'位置存在非典型非丝氨酸残基的潜在非抑制性ZPI变体,这是抑制性丝氨酸蛋白酶抑制剂活性的关键决定因素。ZPI和AGT之间密切的进化关系进一步表明凝血和血压调节之间存在机制上的相互作用,突出了涉及这些丝氨酸蛋白酶抑制剂的共同调节途径。总之,这些发现扩展了ZPI的功能范围,并强调了丝氨酸蛋白酶抑制剂介导的生理过程的动态进化。