Genovese Dario M, Scarzello Facundo L, Domini Georgina M, Crosio Matías, Miranda Paulo B, Wilke Natalia
Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
J Membr Biol. 2025 Sep 15. doi: 10.1007/s00232-025-00359-y.
Yeasts are able to tolerate different environmental conditions, including stress situations. Given their broad applications in the food industry, their ability to adapt to stressful conditions is an active area of research. Lipid composition of the yeast membrane is affected by environmental stress, and thus, the regulation of the membrane biophysical properties under such conditions may be a key point for yeast adaptation. Although Saccharomyces cerevisiae is highly tolerant to ethanol, its growth is inhibited when this alcohol accumulates in the medium. Therefore, we studied the effect of ethanol on yeast membranes using the fluorescent probe Laurdan, which is sensitive to water dipolar relaxation. Three strains were used: a laboratory strain of S. cerevisiae (BY4741), a mutant that lacks ergosterol (erg6 ), and a commercial baker's yeast. At low ethanol levels, the emission signal of the probe remained constant for all strains. For ethanol proportions higher than 20% (v/v), at which cells are no longer viable, the signal changed abruptly, indicating an increase in solvent dipolar relaxation. We further studied BY4741 yeasts acclimated to high ethanol levels and found that water was more ordered in these membranes than in BY4741 grown in the absence of ethanol. We propose that water structure and membrane hydration are key for yeast viability in the presence of ethanol, and that studying the biophysical properties of membranes could be useful to identify yeast strains with a high tolerance to ethanol.
酵母能够耐受不同的环境条件,包括应激情况。鉴于它们在食品工业中的广泛应用,其适应应激条件的能力是一个活跃的研究领域。酵母细胞膜的脂质组成会受到环境应激的影响,因此,在这种条件下对膜生物物理特性的调节可能是酵母适应的关键。尽管酿酒酵母对乙醇具有高度耐受性,但当培养基中乙醇积累时,其生长会受到抑制。因此,我们使用对水偶极弛豫敏感的荧光探针劳丹明研究了乙醇对酵母细胞膜的影响。使用了三种菌株:酿酒酵母的实验室菌株(BY4741)、一种缺乏麦角固醇的突变体(erg6 )和一种商业面包酵母。在低乙醇水平下,所有菌株的探针发射信号保持恒定。对于高于20%(v/v)的乙醇比例,此时细胞不再存活,信号突然变化,表明溶剂偶极弛豫增加。我们进一步研究了适应高乙醇水平的BY4741酵母,发现这些细胞膜中的水比在无乙醇条件下生长的BY4741中的水更有序。我们提出,水结构和膜水合作用是酵母在乙醇存在下存活的关键,并且研究膜的生物物理特性可能有助于鉴定对乙醇具有高耐受性的酵母菌株。