Versace Vincent, Boyle Douglas, Janus Edward, Dunbar James, Feyissa Tesfaye R, Belsti Yitayeh, Trinder Peta, Enticott Joanne, Sutton Brett, Speight Jane, Boyle Jacqueline, Cooray Shamil Deshan, Beks Hannah, O'Reilly Sharleen, Mc Namara Kevin, Rumbold Alice R, Lim Siew, Ademi Zanfina, Teede Helena J
Deakin Rural Health, School of Medicine, Deakin University, Warrnambool, Victoria, Australia
Geohealth Laboratory, Department of Population Health, Dasman Diabetes Institute, Kuwait City, Al Asimah Governate, Kuwait.
BMJ Open. 2025 Sep 14;15(9):e106052. doi: 10.1136/bmjopen-2025-106052.
Women with gestational diabetes mellitus (GDM) are at seven-fold to ten-fold increased risk of type 2 diabetes mellitus (T2DM) when compared with those who experience a normoglycaemic pregnancy, and the cumulative incidence increases with the time of follow-up post birth. This protocol outlines the development and validation of a risk prediction model assessing the 5-year and 10-year risk of T2DM in women with a prior GDM diagnosis.
Data from all birth mothers and registered births in Victoria and South Australia, retrospectively linked to national diabetes data and pathology laboratory data from 2008 to 2021, will be used for model development and validation of GDM to T2DM conversion. Candidate predictors will be selected considering existing literature, clinical significance and statistical association, including age, body mass index, parity, ethnicity, history of recurrent GDM, family history of T2DM and antenatal and postnatal glucose levels. Traditional statistical methods and machine learning algorithms will explore the best-performing and easily applicable prediction models. We will consider bootstrapping or K-fold cross-validation for internal model validation. If computationally difficult due to the expected large sample size, we will consider developing the model using 80% of available data and evaluating using a 20% random subset. We will consider external or temporal validation of the prediction model based on the availability of data. The prediction model's performance will be assessed by using discrimination (area under the receiver operating characteristic curve, calibration (calibration slope, calibration intercept, calibration-in-the-large and observed-to-expected ratio), model overall fit (Brier score and Cox-Snell R2) and net benefit (decision curve analysis). To examine algorithm equity, the model's predictive performance across ethnic groups and parity will be analysed. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis-Artificial Intelligence (TRIPOD+AI) statements will be followed.
Ethics approvals have been received from Deakin University Human Research Ethics Committee (2021-179); Monash Health Human Research Ethics Committee (RES-22-0000-048A); the Australian Institute of Health and Welfare (EO2022/5/1369); the Aboriginal Health Research Ethics Committee of South Australia (SA) (04-23-1056); in addition to a Site-Specific Assessment to cover the involvement of the Preventative Health SA (formerly Wellbeing SA) (2023/SSA00065). Project findings will be disseminated in peer-reviewed journals and at scientific conferences and provided to relevant stakeholders to enable the translation of research findings into population health programmes and health policy.
与血糖正常的孕妇相比,患有妊娠期糖尿病(GDM)的女性患2型糖尿病(T2DM)的风险增加了7至10倍,且累积发病率随产后随访时间的延长而增加。本方案概述了一种风险预测模型的开发和验证,该模型用于评估既往诊断为GDM的女性患T2DM的5年和10年风险。
来自维多利亚州和南澳大利亚州所有分娩母亲及登记出生信息的数据,通过回顾性链接2008年至2021年的国家糖尿病数据和病理实验室数据,将用于GDM向T2DM转化的模型开发和验证。将根据现有文献、临床意义和统计关联来选择候选预测因素,包括年龄、体重指数、产次、种族、复发性GDM病史、T2DM家族史以及产前和产后血糖水平。传统统计方法和机器学习算法将探索性能最佳且易于应用的预测模型。我们将考虑采用自助法或K折交叉验证进行内部模型验证。如果由于预期样本量较大而计算困难,我们将考虑使用80%的可用数据开发模型,并使用20%的随机子集进行评估。我们将根据数据的可用性考虑对预测模型进行外部或时间验证。预测模型的性能将通过辨别力(受试者操作特征曲线下面积)、校准(校准斜率、校准截距、大样本校准和观察与预期比率)、模型整体拟合度(Brier评分和Cox-Snell R2)和净效益(决策曲线分析)进行评估。为检验算法公平性,将分析模型在不同种族群体和产次中的预测性能。将遵循个体预后或诊断多变量预测模型的透明报告——人工智能(TRIPOD+AI)声明。
已获得迪肯大学人类研究伦理委员会(2021-179)、莫纳什健康人类研究伦理委员会(RES-22-0000-048A)、澳大利亚卫生与福利研究所(EO2022/5/1369)、南澳大利亚州原住民健康研究伦理委员会(04-23-1056)的伦理批准;此外还进行了特定地点评估,以涵盖南澳大利亚州预防健康局(原南澳大利亚州幸福局)的参与(2023/SSA00065)。项目研究结果将在同行评审期刊和科学会议上发表,并提供给相关利益攸关方,以便将研究结果转化为人群健康计划和卫生政策。