El Meligy Hesham, Amin Khaled S, Elhaes Hanan, Ibrahim Medhat A
Electron Microscope & Thin Films Department, National Research Centre, 33 El-Bohouth St., 12622, Dokki, Giza, Egypt.
Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
Sci Rep. 2025 Sep 15;15(1):32538. doi: 10.1038/s41598-025-18685-5.
In this computational investigation, the effect of decoration of graphene oxide (GrO) with three different species FeO, SO, and NO modulates its electronic structure and reactivity for potential electrode and sensing applications. All model structures (pristine graphene, GrO, GrO/FeO, GrO/SO, and GrO/NO) were optimized at the B3LYP/LANL2MB level of theory. We analyzed total dipole moments (TDM), HOMO/LUMO energy gaps (ΔE), global reactivity descriptors (I, A, µ, η, S, ω), density of states (DOS and PDOS), molecular electrostatic potential (MESP), Quantum Theory of Atoms in Molecules (QTAIM) topologies, and noncovalent interaction (NCI) patterns. Oxidation from Gr to GrO created a modest dipole moment (3.06 Debye) and reduced ΔE from 4.483 eV to 3.226 eV. Decoration with FeO raised the TDM to 14.26 Debye and decreased ΔE to 1.625 eV, while SO decoration yielded the largest TDM (20.38 Debye) and the smallest gap (0.576 eV). In contrast, NO decoration produced intermediate values (TDM = 2.90 Debye, ΔE = 2.412 eV). Global reactivity descriptors confirm that GrO/FeO and GrO/SO acquire strong electrophilic character and high softness, and GrO/NO retains moderate reactivity. DOS/PDOS analysis shows that Fe, S, and N introduce new states near the Fermi level, facilitating charge transfer. MESP maps identify electron-rich and -poor regions at functional sites, while QTAIM indicates a covalent Fe-O bond in GrO/FeO and hydrogen-bonding interactions in GrO/SO and GrO/NO. NCI analysis further supports the presence of van der Waals interactions at the decoration interfaces. Taken together, our results demonstrate that choice of decorating species enables precise tuning of GrO's electronic and reactive properties, highlighting GrO/FeO and especially GrO/SO as promising candidates for enhanced electrode performance and gas sensing.
在这项计算研究中,用三种不同物种FeO、SO和NO对氧化石墨烯(GrO)进行修饰的效果,调节了其电子结构和反应活性,以用于潜在的电极和传感应用。所有模型结构(原始石墨烯、GrO、GrO/FeO、GrO/SO和GrO/NO)均在B3LYP/LANL2MB理论水平上进行了优化。我们分析了总偶极矩(TDM)、HOMO/LUMO能隙(ΔE)、全局反应性描述符(I、A、μ、η、S、ω)、态密度(DOS和PDOS)、分子静电势(MESP)、分子中的原子量子理论(QTAIM)拓扑结构以及非共价相互作用(NCI)模式。从Gr到GrO的氧化产生了适度的偶极矩(3.06德拜),并将ΔE从4.483 eV降低到3.226 eV。用FeO修饰使TDM增加到14.26德拜,并使ΔE降低到1.625 eV,而用SO修饰产生了最大的TDM(20.38德拜)和最小的能隙(0.576 eV)。相比之下,用NO修饰产生了中间值(TDM = 2.90德拜,ΔE = 2.412 eV)。全局反应性描述符证实,GrO/FeO和GrO/SO具有很强的亲电特性和高柔软性,而GrO/NO保留了适度的反应活性。DOS/PDOS分析表明,Fe、S和N在费米能级附近引入了新的状态,促进了电荷转移。MESP图识别了功能位点处的富电子和贫电子区域,而QTAIM表明GrO/FeO中存在共价Fe - O键,GrO/SO和GrO/NO中存在氢键相互作用。NCI分析进一步支持了修饰界面处范德华相互作用的存在。综上所述,我们的结果表明,修饰物种的选择能够精确调节GrO的电子和反应特性,突出GrO/FeO尤其是GrO/SO作为增强电极性能和气体传感的有前景的候选材料。