Andreana Ilaria, Ghosh Ananga, Repellin Mathieu, Kneppers Anita, Ben Larbi Sabrina, Tifni Federica, Fessard Aurélie, Martin Marion, Sidi-Boumedine Jacqueline, Kryza David, Stella Barbara, Arpicco Silvia, Bordes Claire, Chevalier Yves, Gondin Julien, Chazaud Bénédicte, Mounier Rémi, Lollo Giovanna, Juban Gaëtan
Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy.
Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, Villeurbanne, France.
Mol Ther Methods Clin Dev. 2025 Aug 14;33(3):101564. doi: 10.1016/j.omtm.2025.101564. eCollection 2025 Sep 11.
Muscular dystrophies, such as Duchenne muscular dystrophy (DMD), are caused by permanent muscle injuries leading to chronic inflammation, with macrophages harboring an altered inflammatory profile contributing to fibrosis through the secretion of transforming growth factor β1 (TGF-β1). We previously showed that AMP-activated protein kinase (AMPK) activation reduces TGF-β1 secretion by macrophages and improves muscle homeostasis and muscle force in a DMD mouse model. However, direct AMPK activators like compound 991 show strong adverse effects . To overcome this toxicity, we encapsulated 991 into biodegradable polymeric poly(lactic--glycolic) acid (PLGA) nanoparticles for delivery. We show that 991-loaded PLGA nanoparticles retained drug activity on fibrotic macrophages and . In the D2-mdx DMD mouse model, intravenously injected PLGA nanoparticles reached macrophages in and diaphragm muscles, two severely affected muscles in this model, but not in heart and quadriceps. Chronic intravenous injections of 991-loaded PLGA nanoparticles decreased inflammation in both and diaphragm, which was associated with TGF-β1 level and fibrosis reduction and increase in myofiber size and muscle mass in the , without toxicity. These results demonstrate that nanomedicine is an efficient strategy to deliver AMPK activators to target inflammation and improve the dystrophic muscle phenotype in the .
肌肉萎缩症,如杜兴氏肌肉萎缩症(DMD),是由永久性肌肉损伤导致慢性炎症引起的,巨噬细胞具有改变的炎症特征,通过分泌转化生长因子β1(TGF-β1)促进纤维化。我们之前表明,在DMD小鼠模型中,AMP激活的蛋白激酶(AMPK)激活可减少巨噬细胞分泌TGF-β1,并改善肌肉稳态和肌肉力量。然而,像化合物991这样的直接AMPK激活剂显示出强烈的不良反应。为了克服这种毒性,我们将991封装到可生物降解的聚乳酸-乙醇酸(PLGA)纳米颗粒中进行递送。我们表明,负载991的PLGA纳米颗粒对纤维化巨噬细胞保持药物活性。在D2-mdx DMD小鼠模型中,静脉注射的PLGA纳米颗粒到达该模型中两个严重受影响的肌肉——膈肌和肋间肌中的巨噬细胞,但未到达心脏和股四头肌中的巨噬细胞。慢性静脉注射负载991的PLGA纳米颗粒可降低肋间肌和膈肌中的炎症,这与TGF-β1水平降低、纤维化减少以及肋间肌中肌纤维大小和肌肉质量增加相关,且无毒性。这些结果表明,纳米医学是一种有效的策略,可将AMPK激活剂递送至目标炎症部位,并改善DMD模型中的营养不良性肌肉表型。