Suppr超能文献

具有内在生物活性的铁螯合聚(N-丙烯酰基-2-甘氨酸)/壳聚糖水凝胶支架构建双低氧-免疫微环境促进功能性半月板再生。

Inherently bioactive iron-chelating Poly (N-acryloyl 2-glycine)/chitosan hydrogel scaffolds orchestrating dual hypoxic-immune microenvironment for functional meniscus regeneration.

作者信息

Xu Bingbing, Ye Jing, Song Shitang, Dou Xueyu, Li Chao, Wang Xing, Yu Jia-Kuo

机构信息

Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China.

Institute of Sports Medicine of Peking University, Beijing, 100191, China.

出版信息

Bioact Mater. 2025 Sep 1;54:492-508. doi: 10.1016/j.bioactmat.2025.08.028. eCollection 2025 Dec.

Abstract

Despite progress in tissue-engineered meniscus (TEM) as alternatives to meniscectomy, challenges remain in inflammatory regulation, oxidative resistance, and mechanical stability under pathological microenvironments. Innovatively, we combined personalized meniscus scaffold, hydrogel ion crosslinking network technology, and microenvironment regulation function to prepare a multifunctional poly (N-acryloyl 2-glycine)/chitosan (PACG/CS) composite hydrogel meniscus scaffold featuring heterogeneous bionic structure, high strength and toughness, hypoxic inducing activity, and anti-inflammatory and antioxidant effects. Crucially, the inherently bioactive hydrogel networks crucially leveraged their carboxyl groups to orchestrate iron ion chelation, establishing a hypoxia-mediated microenvironment that dynamically modulated pro-/anti-inflammatory equilibrium, which in turn supported the chondrocyte survival, facilitated the development of a cartilage matrix, and ultimately promoted the meniscus regeneration. Notably, peripheral blood mesenchymal stem cells (PBMSCs) exhibited superior meniscus regeneration efficiency in low-oxygen conditions compared to bone marrow mesenchymal stem cells (BMSCs). After evaluating the effects of hypoxia environment induced by highly efficient iron chelation of PACG/CS hydrogel scaffolds on the activation of HIF-1α signaling pathway, anti-inflammatory and antioxidant regulation, the regulatory mechanism of immune microenvironment on the growth and cultivation quality of TEM were elucidated and . Overall, our have important implications for comprehending the biological impacts of biomaterials and developing novel approaches for meniscus regeneration.

摘要

尽管组织工程半月板(TEM)作为半月板切除术的替代方法取得了进展,但在病理微环境下的炎症调节、抗氧化性和机械稳定性方面仍存在挑战。我们创新性地将个性化半月板支架、水凝胶离子交联网络技术和微环境调节功能相结合,制备了一种具有异质仿生结构、高强度和韧性、低氧诱导活性以及抗炎和抗氧化作用的多功能聚(N-丙烯酰基-2-甘氨酸)/壳聚糖(PACG/CS)复合水凝胶半月板支架。至关重要的是,具有内在生物活性的水凝胶网络关键地利用其羧基来协调铁离子螯合,建立了一种低氧介导的微环境,动态调节促炎/抗炎平衡,进而支持软骨细胞存活,促进软骨基质发育,并最终促进半月板再生。值得注意的是,与骨髓间充质干细胞(BMSC)相比,外周血间充质干细胞(PBMSC)在低氧条件下表现出更高的半月板再生效率。在评估PACG/CS水凝胶支架高效铁螯合诱导的低氧环境对HIF-1α信号通路激活、抗炎和抗氧化调节的影响后,阐明了免疫微环境对TEM生长和培养质量的调节机制。总体而言,我们的研究对于理解生物材料的生物学影响以及开发半月板再生的新方法具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b09/12433485/072557d66251/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验