Vijaya S, Kennedy L John
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India.
Dalton Trans. 2025 Sep 16. doi: 10.1039/d5dt01617g.
Hydrogen is widely recognized as a clean and sustainable energy carrier, and the development of efficient, durable electrocatalysts for the hydrogen evolution reaction (HER) remains a key challenge in realizing large-scale hydrogen production. In this study, we report a two-step synthesis of a platinum decorated CoNiFe layered double hydroxide (Pt@CNF) electrocatalyst, engineered to enhance HER performance. Field-emission scanning electron microscopy (FE-SEM) confirms the uniform distribution of Pt nanoparticles on CoNiFe LDH (CNF) nanosheets. The incorporation of Pt, possessing an optimal hydrogen adsorption energy, significantly reduces the overpotential from 215 mV (CNF) to 117 mV (Pt@CNF) at a current density of 10 mA cm. The enhanced intrinsic activity of Pt@CNF is further evidenced by a substantial increase in turnover frequency (TOF) from 7.1 × 10 s to 14.6 × 10 s. Additionally, Pt@CNF exhibits a larger electrochemical surface area (ECSA) and higher active ECSA () compared to pristine CNF, reflecting the greater density of accessible catalytic sites. The synergy between Pt and the CNF matrix improves both charge transfer kinetics and catalytic durability, enabling Pt@CNF to deliver low overpotentials of 298, 370, and 441 mV at high current densities of 100, 200, and 400 mA cm, respectively. These findings highlight the potential of Pt@CNF as a high-performance HER electrocatalyst for next-generation hydrogen production technologies.
氢被广泛认为是一种清洁且可持续的能源载体,而开发用于析氢反应(HER)的高效、耐用的电催化剂仍然是实现大规模制氢的关键挑战。在本研究中,我们报告了一种两步合成法制备的铂修饰的钴镍铁层状双氢氧化物(Pt@CNF)电催化剂,其经过设计以提高析氢反应性能。场发射扫描电子显微镜(FE-SEM)证实了铂纳米颗粒在钴镍铁层状双氢氧化物(CNF)纳米片上的均匀分布。具有最佳氢吸附能的铂的掺入,在电流密度为10 mA cm时,显著降低了过电位,从215 mV(CNF)降至117 mV(Pt@CNF)。周转频率(TOF)从7.1×10 s大幅增加到14.6×10 s,进一步证明了Pt@CNF增强的本征活性。此外,与原始CNF相比,Pt@CNF表现出更大的电化学表面积(ECSA)和更高的活性ECSA(),这反映了可及催化位点的密度更大。铂与CNF基体之间的协同作用改善了电荷转移动力学和催化耐久性,使Pt@CNF在100、200和400 mA cm的高电流密度下分别具有298、370和441 mV的低过电位。这些发现突出了Pt@CNF作为下一代制氢技术的高性能析氢反应电催化剂的潜力。