Peng Jia, Zhang Qiongsi, Rao Xiongjian, Allison Derek B, Kong Yifan, Wang Ruixin, Liu Jinghui, Zhang Yanquan, Katz Wendy, Li Zhiguo, Liu Xiaoqi
Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA.
Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
Oncogene. 2025 Sep 16. doi: 10.1038/s41388-025-03571-1.
Although the involvement of polo-like kinase 1 (PLK1) in metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis has been previously described, the underlying molecular mechanism remains unclear. Pyruvate dehydrogenase (PDH) catalyzes the conversion of pyruvate into acetyl-CoA, the starting material for the tricarboxylic acid (TCA) cycle. In a companion study by Zhang et al., we demonstrated that PLK1 phosphorylation of PDHA1 at threonine 57 (PDHA1-T57) drives its protein degradation via mitophagy activation. Using a stable-isotope resolved metabolomics (SIRM) approach, we now show that PLK1 phosphorylation of PDHA1-T57 results in metabolic reprogramming from OXPHOS to glycolysis. Notably, cells mimicking PDHA1-T57 phosphorylation rely more on the aspartate-malate shuttle than on glucose-derived pyruvate to sustain the TCA cycle. This metabolic shift was also observed in mouse embryonic fibroblasts (MEFs) and transgenic mice conditionally expressing the PDHA1-T57D variant, highlighting the role of PLK1 in metabolic reprogramming in vivo. It is well-established that pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation of PDH leads to its inactivation and that dichloroacetic acid (DCA), a PDK inhibitor, has been investigated in preclinical and early clinical studies as a potential therapeutic agent for lung cancer. We demonstrated that DCA combined with Onvansertib, a PLK1 inhibitor, synergistically inhibits lung tumor growth by enhancing mitochondrial ROS, inhibiting glycolysis, and inducing apoptosis. This study aims to elucidate how PLK1-associated activity drives the metabolic reprogramming from OXPHOS to glycolysis during cellular transformation, thereby contributing to lung carcinogenesis. Our results provide support for a clinical trial to evaluate the efficacy of Onvansertib plus DCA in treating lung cancer.
尽管之前已有研究表明polo样激酶1(PLK1)参与了从氧化磷酸化(OXPHOS)到糖酵解的代谢重编程,但其潜在的分子机制仍不清楚。丙酮酸脱氢酶(PDH)催化丙酮酸转化为乙酰辅酶A,而乙酰辅酶A是三羧酸(TCA)循环的起始物质。在Zhang等人的一项相关研究中,我们证明了PLK1对PDHA1苏氨酸57位点(PDHA1-T57)的磷酸化通过线粒体自噬激活促使其蛋白质降解。现在,我们使用稳定同位素分辨代谢组学(SIRM)方法表明,PLK1对PDHA1-T57的磷酸化导致了从OXPHOS到糖酵解的代谢重编程。值得注意的是,模拟PDHA1-T57磷酸化的细胞更多地依赖天冬氨酸-苹果酸穿梭而非葡萄糖衍生的丙酮酸来维持TCA循环。在小鼠胚胎成纤维细胞(MEF)和条件性表达PDHA1-T57D变体的转基因小鼠中也观察到了这种代谢转变,突出了PLK1在体内代谢重编程中的作用。众所周知,丙酮酸脱氢酶激酶(PDK)介导的PDH磷酸化会导致其失活,并且二氯乙酸(DCA)作为一种PDK抑制剂,已在临床前和早期临床研究中作为肺癌的潜在治疗药物进行了研究。我们证明,DCA与PLK1抑制剂Onvansertib联合使用,通过增强线粒体活性氧、抑制糖酵解和诱导凋亡,协同抑制肺癌肿瘤生长。本研究旨在阐明PLK1相关活性在细胞转化过程中如何驱动从OXPHOS到糖酵解的代谢重编程,从而促进肺癌发生。我们的结果为评估Onvansertib加DCA治疗肺癌疗效的临床试验提供了支持。