Pinzauti David, Biazzo Manuele, Podrini Christine, Alevizou Antonia, Safarika Asimina, Damoraki Georgia, Koufargyris Panagiotis, Tasouli Elisavet, Skopelitis Ilias, Poulakou Garyfallia, Sympardi Styliani, Giamarellos-Bourbolis Evangelos J
The BioArte Limited, San Gwann, Malta.
4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
Front Cell Infect Microbiol. 2025 Sep 1;15:1656171. doi: 10.3389/fcimb.2025.1656171. eCollection 2025.
Timely and accurate identification of bloodstream pathogens is critical for targeted antimicrobial therapy in sepsis. Conventional blood cultures remain the Standard-of-Care (SoC) for pathogen identification but are limited by low sensitivity and prolonged turnaround times, hampering timely and targeted antimicrobial stewardship. Advances in next-generation sequencing (NGS) offer potential for culture-independent, rapid, and comprehensive detection of pathogens and prediction of antimicrobial resistance. This study evaluated the diagnostic performance of PISTE™ technology, an NGS-based diagnostic workflow combining full-length 16S rRNA gene sequencing and metagenomic analysis for the diagnosis of circulating bacteria in sepsis.
In this prospective, multicenter, phase IIa proof-of-concept study, adult patients with suspected sepsis were enrolled from four hospitals in Athens, Greece. Blood samples were collected prior to antibiotic initiation and processed using SoC cultures and PISTE platform. PISTE integrates automated DNA purification (KingFisher, Thermo Fisher Scientific), full-length 16S rRNA gene sequencing, metagenomics analysis (SQK-PRB114.24, Oxford Nanopore Technologies), and real-time sequencing using Oxford Nanopore GridION Mk1b device. A dedicated analysis pipeline was developed for accurate pathogen detection and prediction of antimicrobial resistance profiles. The primary endpoint was the diagnostic concordance between PISTE and SoC cultures.
A total of 100 patients (median age 79 years, median Charlson's Comorbidity Index 5) were enrolled. Of these, 71 patients met Sepsis-3 criteria. In this subgroup, PISTE showed an overall accuracy of 95.7%, with a sensitivity of 91.7%, specificity of 96.5%, positive predictive value of 84.6%, and negative predictive value of 98.2% compared to SoC. The median time to pathogen identification and Antimicrobial Susceptibility Testing (AST) with PISTE was 12.0 hours, significantly faster than in SoC cultures (30.4 hours, p < 0.0001). Resistance gene profiling showed strong agreement with SoC AST results, particularly for β-lactam and carbapenem resistance.
PISTE technology exhibited high diagnostic accuracy and significantly reduced turnaround time compared to conventional cultures, supporting its potential as a short turnaround time and reliable diagnostic tool for bloodstream infections. Further optimization and validation in larger cohorts are warranted to enhance clinical implementation and improve antimicrobial stewardship in sepsis management.
及时准确地识别血流感染病原体对于脓毒症的靶向抗菌治疗至关重要。传统血培养仍然是病原体识别的护理标准(SoC),但受灵敏度低和周转时间长的限制,妨碍了及时且有针对性的抗菌管理。下一代测序(NGS)技术的进步为不依赖培养、快速且全面地检测病原体以及预测抗菌药物耐药性提供了可能。本研究评估了PISTE™技术的诊断性能,这是一种基于NGS的诊断流程,结合全长16S rRNA基因测序和宏基因组分析用于诊断脓毒症中的循环细菌。
在这项前瞻性、多中心、IIa期概念验证研究中,从希腊雅典的四家医院招募了疑似脓毒症的成年患者。在开始使用抗生素之前采集血样,并使用SoC培养和PISTE平台进行处理。PISTE整合了自动化DNA纯化(KingFisher,赛默飞世尔科技公司)、全长16S rRNA基因测序、宏基因组分析(SQK-PRB114.24,牛津纳米孔技术公司)以及使用牛津纳米孔GridION Mk1b设备进行实时测序。开发了一个专门的分析流程用于准确检测病原体并预测抗菌药物耐药谱。主要终点是PISTE与SoC培养之间的诊断一致性。
共招募了100名患者(中位年龄79岁,中位查尔森合并症指数5)。其中,71名患者符合脓毒症-3标准。在该亚组中,与SoC相比,PISTE的总体准确率为95.7%,灵敏度为91.7%,特异性为96.5%,阳性预测值为84.6%,阴性预测值为98.2%。使用PISTE进行病原体鉴定和抗菌药物敏感性测试(AST)的中位时间为12.0小时,明显快于SoC培养(30.4小时,p < 0.0001)。耐药基因谱分析与SoC的AST结果高度一致,特别是对于β-内酰胺类和碳青霉烯类耐药。
与传统培养相比,PISTE技术显示出高诊断准确性且显著缩短了周转时间,支持其作为血流感染的短周转时间且可靠的诊断工具的潜力。有必要在更大队列中进行进一步优化和验证,以加强临床应用并改善脓毒症管理中的抗菌管理。