Liu Aihong, Zhang Lingling, Huang Debin, Qu Lianlian
Department of Nursing, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Department of Critical Care Medicine, First Affiliated Hospital of Guangxi Medical University, Guangxi Clinical Research Center for Critical Care Medicine, Nanning, China.
Front Public Health. 2025 Sep 1;13:1628493. doi: 10.3389/fpubh.2025.1628493. eCollection 2025.
This study aims to develop a advanced machine learning model to predict the fall risk among community-dwelling elders. This study could present actionable advices for early prevention of fall risk.
Between October and December 2022, 977 older adults from the Hannan District of Wuhan were recruited. Data was collected using structured questionnaires. The sample was randomly split into training (732 participants) and testing (245 participants) sets at a 3:1 ratio. The primary outcome was the occurrence of fall. Five machine learning models-Random Forest (RF), Gradient Boosted Decision Tree (GBDT), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), and Categorical Features Gradient Boosting (CatBoost)-were evaluated against a Logistic Regression (LR) model. Model performance was assessed using AUC, accuracy, precision, sensitivity, specificity, and F1 score.
Among the 977 older adults, 195 experienced falls (20.0%). ROC curve analysis showed AUC values of LR, RF, LGBM, GBDT, XGBoost, and CatBoost were, respectively, 0.8390, 0.8632, 0.8614, 0.8544, 0.8705, and 0.8719. CatBoost had the highest AUC, indicating the best predictive performance. SHapley Additive exPlanations (SHAP) analysis identified key features influencing the CatBoost model: history of falls, comorbidities, polypharmacy, sleep disorders, ADL, TUG results, frailty status, and use of assistive devices.
The fall risk prediction model for community-dwelling older adults, developed with CatBoost, showed excellent performance and can aid in early clinical assessment and fall prevention.
本研究旨在开发一种先进的机器学习模型,以预测社区居住老年人的跌倒风险。本研究可为跌倒风险的早期预防提供可行的建议。
2022年10月至12月期间,招募了武汉市汉南区的977名老年人。使用结构化问卷收集数据。样本以3:1的比例随机分为训练集(732名参与者)和测试集(245名参与者)。主要结局是跌倒的发生情况。将五个机器学习模型——随机森林(RF)、梯度提升决策树(GBDT)、轻量级梯度提升机(LGBM)、极端梯度提升(XGBoost)和分类特征梯度提升(CatBoost)——与逻辑回归(LR)模型进行评估比较。使用AUC、准确率、精确率、灵敏度、特异性和F1分数评估模型性能。
在977名老年人中,195人经历过跌倒(20.0%)。ROC曲线分析显示,LR、RF、LGBM、GBDT、XGBoost和CatBoost的AUC值分别为0.8390、0.8632、0.8614、0.8544、0.8705和0.8719。CatBoost的AUC最高,表明其预测性能最佳。SHapley值相加解释(SHAP)分析确定了影响CatBoost模型的关键特征:跌倒史、合并症、多种药物治疗、睡眠障碍、日常生活活动能力、定时起立行走测试结果、衰弱状态和辅助设备的使用。
使用CatBoost开发的社区居住老年人跌倒风险预测模型表现出色,可有助于早期临床评估和跌倒预防。