Suppr超能文献

基于物理约束的三维高斯点绘制的光学测量声场数据驱动体积重建

Data-driven volumetric reconstruction for optically measured sound field using physics-constrained 3D Gaussian splatting.

作者信息

Tanigawa Risako, Ishikawa Kenji, Harada Noboru, Oikawa Yasuhiro

机构信息

Communication Science Laboratories, NTT, Inc., Atsugi, Kanagawa 243-0198, Japan.

Department of Intermedia Art and Science, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.

出版信息

J Acoust Soc Am. 2025 Sep 1;158(3):2163-2175. doi: 10.1121/10.0039344.

Abstract

Acousto-optic sensing is a powerful approach to measuring sound at a high resolution; yet, it faces a critical challenge because the measured value is a line integral of the sound. To solve this problem, sound-field reconstruction methods have been proposed. Promising approaches include physical-model-based reconstruction methods, which represent a sound field as a linear combination of basis functions and determine the expansion coefficients. However, they are limited by the choice of basis functions, which means that each model has a suitable sound field, making it difficult to apply a single model to all sound fields. In this paper, a data-driven approach that is applicable to high-complexity sound fields is proposed. A 3D Gaussian splatting (3DGS) scheme for three-dimensional (3D) sound-field reconstruction is leveraged. 3DGS is an advanced and cutting-edge approach in computer vision, which represents a 3D scene as the sum of Gaussian kernels placed in 3D space. In the proposed method, the 3DGS-based volume reconstruction approach, R2-Gaussian, is expanded to handle arbitrary real numbers to represent sound fields and introduces a Helmholtz loss in the optimization. Evaluation experiments were performed with 11 simulated sound fields and 1 measured sound field. The experiments have revealed that the 3DGS-based approach can reconstruct sound fields.

摘要

声光传感是一种高分辨率测量声音的强大方法;然而,它面临一个关键挑战,因为测量值是声音的线积分。为了解决这个问题,已经提出了声场重建方法。有前景的方法包括基于物理模型的重建方法,该方法将声场表示为基函数的线性组合并确定展开系数。然而,它们受到基函数选择的限制,这意味着每个模型都有一个合适的声场,使得难以将单个模型应用于所有声场。本文提出了一种适用于高复杂度声场的数据驱动方法。利用一种用于三维(3D)声场重建的3D高斯点云渲染(3DGS)方案。3DGS是计算机视觉中一种先进且前沿的方法,它将3D场景表示为放置在3D空间中的高斯核的总和。在所提出的方法中,基于3DGS的体素重建方法R2 - 高斯被扩展以处理任意实数来表示声场,并在优化中引入亥姆霍兹损失。使用11个模拟声场和1个实测声场进行了评估实验。实验表明基于3DGS的方法能够重建声场。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验