Gao Xing, Yang Liping, She Tianyu, Wang Fei, Ding Hongchao, Lu Yanhong, Xu Yuchao, Wang Yuan, Li Ping, Duan Xiaoyi, Leng Xiaoping
Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
Department of PET-CT, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China.
Eur J Nucl Med Mol Imaging. 2025 Sep 17. doi: 10.1007/s00259-025-07522-6.
Current radiomic approaches inadequately resolve spatial intratumoral heterogeneity (ITH) in esophageal squamous cell carcinoma (ESCC), limiting neoadjuvant chemoimmunotherapy (NACI) response prediction. We propose an interpretable multimodal framework to: (1) quantitatively map intra-/peritumoral heterogeneity via voxel-wise habitat radiomics; (2) model cross-sectional tumor biology using 2.5D deep learning; and (3) establish mechanism-driven biomarkers via SHAP interpretability to identify resistance-linked subregions.
This dual-center retrospective study analyzed 269 treatment-naïve ESCC patients with baseline PET/CT (training: n = 144; validation: n = 62; test: n = 63). Habitat radiomics delineated tumor subregions via K-means clustering (Calinski-Harabasz-optimized) on PET/CT, extracting 1,834 radiomic features per modality. A multi-stage pipeline (univariate filtering, mRMR, LASSO regression) selected 32 discriminative features. The 2.5D model aggregated ± 4 peri-tumoral slices, fusing PET/CT via MixUp channels using a fine-tuned ResNet50 (ImageNet-pretrained), with multi-instance learning (MIL) translating slice-level features to patient-level predictions. Habitat features, MIL signatures, and clinical variables were integrated via five-classifier ensemble (ExtraTrees/SVM/RandomForest) and Crossformer architecture (SMOTE-balanced). Validation included AUC, sensitivity, specificity, calibration curves, decision curve analysis (DCA), survival metrics (C-index, Kaplan-Meier), and interpretability (SHAP, Grad-CAM).
Habitat radiomics achieved superior validation AUC (0.865, 95% CI: 0.778-0.953), outperforming conventional radiomics (ΔAUC + 3.6%, P < 0.01) and clinical models (ΔAUC + 6.4%, P < 0.001). SHAP identified the invasive front (H2) as dominant predictor (40% of top features), with wavelet_LHH_firstorder_Entropy showing highest impact (SHAP = + 0.42). The 2.5D MIL model demonstrated strong generalizability (validation AUC: 0.861). The combined model achieved state-of-the-art test performance (AUC = 0.824, sensitivity = 0.875) with superior calibration (Hosmer-Lemeshow P > 0.800), effective survival stratification (test C-index: 0.809), and 23-41% net benefit improvement in DCA.
Integrating habitat radiomics and 2.5D deep learning enables interpretable dual diagnostic-prognostic stratification in ESCC, advancing precision oncology by decoding spatial heterogeneity.
当前的放射组学方法在解决食管鳞状细胞癌(ESCC)的肿瘤内空间异质性(ITH)方面存在不足,限制了新辅助化疗免疫治疗(NACI)反应的预测。我们提出了一个可解释的多模态框架,以:(1)通过体素级栖息地放射组学定量绘制肿瘤内/肿瘤周围异质性;(2)使用2.5D深度学习对横断面肿瘤生物学进行建模;(3)通过SHAP可解释性建立机制驱动的生物标志物,以识别与耐药相关的亚区域。
这项双中心回顾性研究分析了269例未经治疗的ESCC患者的基线PET/CT(训练组:n = 144;验证组:n = 62;测试组:n = 63)。栖息地放射组学通过对PET/CT进行K均值聚类(Calinski-Harabasz优化)来描绘肿瘤亚区域,每个模态提取1834个放射组学特征。一个多阶段流程(单变量过滤、mRMR、LASSO回归)选择了32个有鉴别力的特征。2.5D模型聚合了±4个肿瘤周围切片,通过使用微调的ResNet50(预训练于ImageNet)的MixUp通道融合PET/CT,并采用多实例学习(MIL)将切片级特征转化为患者级预测。栖息地特征、MIL特征和临床变量通过五分类器集成(ExtraTrees/SVM/随机森林)和Crossformer架构(SMOTE平衡)进行整合。验证包括AUC、敏感性、特异性、校准曲线、决策曲线分析(DCA)、生存指标(C指数、Kaplan-Meier)和可解释性(SHAP、Grad-CAM)。
栖息地放射组学实现了卓越的验证AUC(0.865,95%CI:0.778 - 0.953),优于传统放射组学(ΔAUC + 3.6%,P < 0.01)和临床模型(ΔAUC + 6.4%,P < 0.001)。SHAP将侵袭前沿(H2)识别为主要预测因子(前特征的40%),其中小波_LHH_一阶_熵显示出最高影响(SHAP = +0.42)。2.5D MIL模型表现出强大的泛化能力(验证AUC:0.861)。联合模型实现了先进的测试性能(AUC = 0.824,敏感性 = 0.875),具有卓越的校准(Hosmer-Lemeshow P > 0.800)、有效的生存分层(测试C指数:0.809)以及DCA中净效益提高23 - 41%。
整合栖息地放射组学和2.5D深度学习能够在ESCC中实现可解释的双重诊断 - 预后分层,通过解码空间异质性推动精准肿瘤学发展。