Suppr超能文献

提高肝细胞癌微血管侵犯的术前诊断:多期CT图像的域适应融合

Enhancing preoperative diagnosis of microvascular invasion in hepatocellular carcinoma: domain-adaptation fusion of multi-phase CT images.

作者信息

Yu Zhaole, Liu Yu, Dai Xisheng, Cui Enming, Cui Jin, Ma Changyi

机构信息

School of Automation, Guangxi University of Science and Technology, Liuzhou, Guangxi, China.

Laboratory of Artificial Intelligence of Biomedicine, Guilin University of Aerospace Technology, Guilin, Guangxi, China.

出版信息

Front Oncol. 2024 Jan 25;14:1332188. doi: 10.3389/fonc.2024.1332188. eCollection 2024.

Abstract

OBJECTIVES

In patients with hepatocellular carcinoma (HCC), accurately predicting the preoperative microvascular invasion (MVI) status is crucial for improving survival rates. This study proposes a multi-modal domain-adaptive fusion model based on deep learning methods to predict the preoperative MVI status in HCC.

MATERIALS AND METHODS

From January 2008 to May 2022, we collected 163 cases of HCC from our institution and 42 cases from another medical facility, with each case including Computed Tomography (CT) images from the pre-contrast phase (PCP), arterial phase (AP), and portal venous phase (PVP). We divided our institution's dataset (n=163) into training (n=119) and test sets (n=44) in an approximate 7:3 ratio. Additionally, we included cases from another institution (n=42) as an external validation set (test1 set). We constructed three single-modality models, a simple concatenated multi-modal model, two current state-of-the-art image fusion model and a multi-modal domain-adaptive fusion model (M-DAFM) based on deep learning methods. We evaluated and analyzed the performance of these constructed models in predicting preoperative MVI using the area under the receiver operating characteristic curve (AUC), decision curve analysis (DCA), and net reclassification improvement (NRI) methods.

RESULTS

In comparison with all models, M-DAFM achieved the highest AUC values across the three datasets (0.8013 for the training set, 0.7839 for the test set, and 0.7454 for the test1 set). Notably, in the test set, M-DAFM's Decision Curve Analysis (DCA) curves consistently demonstrated favorable or optimal net benefits within the 0-0.65 threshold probability range. Additionally, the Net Reclassification Improvement (NRI) values between M-DAFM and the three single-modal models, as well as the simple concatenation model, were all greater than 0 (all p < 0.05). Similarly, the NRI values between M-DAFM and the two current state-of-the-art image fusion models were also greater than 0. These findings collectively indicate that M-DAFM effectively integrates valuable information from multi-phase CT images, thereby enhancing the model's preoperative predictive performance for MVI.

CONCLUSION

The M-DAFM proposed in this study presents an innovative approach to improve the preoperative predictive performance of MVI.

摘要

目的

在肝细胞癌(HCC)患者中,准确预测术前微血管侵犯(MVI)状态对于提高生存率至关重要。本研究提出一种基于深度学习方法的多模态域自适应融合模型,以预测HCC的术前MVI状态。

材料与方法

从2008年1月至2022年5月,我们从本机构收集了163例HCC病例,并从另一家医疗机构收集了42例病例,每个病例包括平扫期(PCP)、动脉期(AP)和门静脉期(PVP)的计算机断层扫描(CT)图像。我们将本机构的数据集(n = 163)以约7:3的比例分为训练集(n = 119)和测试集(n = 44)。此外,我们纳入了另一家机构的病例(n = 42)作为外部验证集(test1集)。我们基于深度学习方法构建了三个单模态模型、一个简单拼接多模态模型、两个当前最先进的图像融合模型和一个多模态域自适应融合模型(M - DAFM)。我们使用受试者操作特征曲线下面积(AUC)、决策曲线分析(DCA)和净重新分类改善(NRI)方法评估并分析了这些构建模型在预测术前MVI方面的性能。

结果

与所有模型相比,M - DAFM在三个数据集中均取得了最高的AUC值(训练集为0.8013,测试集为0.7839,test1集为0.7454)。值得注意的是,在测试集中,M - DAFM的决策曲线分析(DCA)曲线在0 - 0.65阈值概率范围内始终显示出良好或最佳的净效益。此外,M - DAFM与三个单模态模型以及简单拼接模型之间的净重新分类改善(NRI)值均大于0(所有p < 0.05)。同样,M - DAFM与两个当前最先进的图像融合模型之间的NRI值也大于0。这些结果共同表明,M - DAFM有效地整合了多期CT图像中的有价值信息,从而提高了模型对MVI的术前预测性能。

结论

本研究提出的M - DAFM为提高术前MVI预测性能提供了一种创新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验