B G Guardado-Fierros, M A Lorenzo-Santiago, O A Patrón-Soberano, J Rodríguez-Campos, S M Contreras-Ramos
Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico.
División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICYT), Camino a La Presa San José 2055, Lomas 4ª Sección, 78216, San Luis Potosí, Mexico.
Int Microbiol. 2025 Sep 18. doi: 10.1007/s10123-025-00716-w.
Environmental pollution by heavy metals is a major global concern, necessitating the exploration of sustainable bioremediation strategies. Airborne bacteria represent an underexplored resource in this context. This study investigated the potential of bacteria isolated from bioaerosols for the bioremediation of heavy metals. Nine bacterial strains belonging to the genera Exiguobacterium, Kocuria, Rhodococcus, and Staphylococcus were isolated and identified through MaLDI-TOF analysis and 16S rRNA gene sequencing. The minimum inhibitory concentrations (MIC) of chromium, copper, lead, nickel, mercury, and cadmium were determined to evaluate metal resistance. Bioreduction assays were performed to determine the capacity of selected strains to reduce hexavalent chromium [Cr(VI)] in solution. Chromate reductase activity was quantified in Rhodococcus rhodochrous As33. Morphological responses to chromium exposure were examined using scanning and transmission electron microscopy (SEM and TEM). MIC analyses revealed variable but significant resistance to multiple Heavy metals among the isolates. Bioreduction assays demonstrated that five selected strains reduced from 79.9% to 100% of Cr(VI) within 72 h. R. rhodochrous As33 achieved complete Cr(VI) reduction, as confirmed by 1,5-diphenylcarbazide complexation, and inductively coupled plasma mass spectrometry (ICP-MS). Enzymatic analysis indicated a chromate reductase activity of 67.87 U mg⁻ of total protein in this strain. SEM and TEM revealed marked cellular adaptations to chromium stress, including pleomorphism, membrane thinning, vesicle formation, and the deposition of extracellular electron-dense precipitates, suggesting active biosorption and bioprecipitation mechanisms. The results highlight the bioremediation potential of airborne bacteria, particularly R. rhodochrous As33, in heavy metal-contaminated environments. Further studies are needed to validate their performance under complex environmental conditions and to support their application in sustainable remediation strategies.
重金属造成的环境污染是一个重大的全球问题,因此有必要探索可持续的生物修复策略。在这种情况下,空气传播细菌是一种尚未充分探索的资源。本研究调查了从生物气溶胶中分离出的细菌对重金属进行生物修复的潜力。通过基质辅助激光解吸电离飞行时间质谱(MaLDI-TOF)分析和16S rRNA基因测序,分离并鉴定了属于微小杆菌属、考克氏菌属、红球菌属和葡萄球菌属的9株细菌。测定了铬、铜、铅、镍、汞和镉的最低抑菌浓度(MIC),以评估金属抗性。进行生物还原试验,以确定所选菌株在溶液中还原六价铬[Cr(VI)]的能力。对红球菌As33中的铬酸盐还原酶活性进行了定量分析。使用扫描电子显微镜和透射电子显微镜(SEM和TEM)检查了对铬暴露的形态学反应。MIC分析表明,分离株对多种重金属具有不同但显著的抗性。生物还原试验表明,5株所选菌株在72小时内将Cr(VI)还原了79.9%至100%。经1,5-二苯卡巴肼络合和电感耦合等离子体质谱(ICP-MS)证实,红球菌As33实现了Cr(VI)的完全还原。酶分析表明,该菌株中铬酸盐还原酶活性为67.87 U mg⁻总蛋白。SEM和TEM显示,细胞对铬胁迫有明显的适应性变化,包括多形性、膜变薄、囊泡形成和细胞外电子致密沉淀物的沉积,这表明存在活跃的生物吸附和生物沉淀机制。结果突出了空气传播细菌,特别是红球菌As33在重金属污染环境中的生物修复潜力。需要进一步研究以验证它们在复杂环境条件下的性能,并支持它们在可持续修复策略中的应用。