Schuldt Braxton R, Haworth-Staines Dominic, Perez-Arevalo Andrea, Broekaart Diede W M, Wang Leon, Gallagher Georgia, Rabinowitz Grace, Goate Alison M, Raj Towfique, Pereira Ana C, Blanchard Joel W
bioRxiv. 2025 Sep 9:2025.09.04.674192. doi: 10.1101/2025.09.04.674192.
Cerebrovascular disease is a major but poorly understood feature of Alzheimer's disease (AD). The strongest genetic AD risk factor, APOE4, is associated with cerebrovascular degeneration, including vascular amyloid deposition and fibrosis. To uncover how APOE4 promotes cerebrovascular pathology, we generated a single-cell transcriptomic atlas of human brain vasculature. In APOE4 carriers, pericyte abundance was significantly reduced and accompanied by the emergence of a myofibroblast-like cell population co-expressing contraction and extracellular matrix genes. Immunostaining confirmed non-vascular myofibroblasts in APOE4 human and mouse brains. We show that APOE4 pericytes transition into myofibroblasts that secrete fibronectin, which promotes vascular amyloid accumulation. Computational and experimental analyses identified elevated TGF-β signaling as the driver of this pericyte-to-myofibroblast transition. Inhibition of TGF-β restored pericyte coverage and reduced vascular fibrosis and amyloid to APOE3 levels, revealing a targetable mechanism linking APOE4 to cerebrovascular pathology in AD.
Cerebrovascular disease is a prominent but poorly understood component of Alzheimer's disease (AD). The strongest genetic risk factor for AD, APOE4, is associated with multiple cerebrovascular pathologies, including vascular amyloid accumulation and fibrosis. APOE4 also renders the cerebrovasculature fragile to the point where the only disease-modifying AD therapeutic, anti-amyloid monoclonal antibodies, are warned against use in APOE4 carriers due to a high risk of hemorrhage and edema. To determine how APOE4 impacts cerebrovascular cells and pathogenesis, we generated a high-resolution single-cell transcriptomics atlas of human cerebrovasculature from APOE4 carriers and non-carriers. In APOE4 individuals, we found that the number of microvascular pericytes was significantly reduced. Notably, loss of pericytes in APOE4 carriers was accompanied by the emergence of a unique population of mural cells characterized by high expression of contraction and extracellular matrix (ECM) genes, hallmarks of myofibroblasts. Immunostaining revealed the presence of myofibroblasts surrounding the microvasculature in APOE4 human hippocampi that were absent in age-matched APOE3/3 controls, even in cases of AD. Myofibroblast presence coincided with a significant increase in fibronectin and amyloid surrounding the vasculature. Myofibroblasts were also present around the microvasculature of aged APOE4/4 but not APOE3/3 mice, suggesting myofibroblast appearance is a direct effect of the APOE4 genotype and not a technical artifact of processing human tissue. To determine the mechanisms and functional implications of APOE4-mediated myofibroblast, we leveraged a vascularized human brain tissue (miBrain) derived from induced pluripotent stem cells. Similar to the post-mortem human brain, APOE4/4 miBrains showed significantly reduced microvascular pericyte coverage, coinciding with the emergence of myofibroblasts co-expressing ECM and contractile genes. Lineage tracing and genetic mixing experiments confirmed that the myofibroblasts emerge from APOE4 pericytes and secrete fibronectin-rich ECM. Knocking down fibronectin in APOE4 mural cells significantly reduced vascular amyloid accumulation. To determine how myofibroblast-like cells arise in the APOE4 brain, we performed computational analysis (NicheNet) on our post-mortem human single-cell transcriptomics cerebrovascular atlas. This predicted that TGF-β is the top causal driver of the pericyte-to-myofibroblast transition. Consistent with this prediction, we found that TGF-β ligands in astrocytes and receptors in mural cells are significantly upregulated compared to APOE3 controls. Chemical and genetic inhibition of TGF-β signaling in APOE4 miBrains significantly reduced myofibroblast presence, while concurrently increasing pericyte microvascular coverage and ultimately lowering vascular fibrosis and amyloid accumulation to APOE3 levels. Using a comprehensive three-pronged approach incorporating analysis of human post-mortem brain, APOE humanized mice, and human iPSC-derived vascularized brain tissue, we demonstrate that APOE4 in mouse and human brain tissue causes increased TGF-β signaling, promoting a pericyte-to-myofibroblast transition that leads to vascular fibrosis and amyloid deposition. This provides critical insight into the mechanisms underlying APOE4 cerebrovascular dysfunction, highlighting new diagnostic and therapeutic strategies for a major AD risk population.
脑血管疾病是阿尔茨海默病(AD)的一个主要特征,但人们对此了解甚少。最强的AD遗传风险因素APOE4与脑血管退变有关,包括血管淀粉样蛋白沉积和纤维化。为了揭示APOE4如何促进脑血管病变,我们生成了人类脑血管的单细胞转录组图谱。在APOE4携带者中,周细胞丰度显著降低,并伴随着一个共同表达收缩和细胞外基质基因的肌成纤维细胞样细胞群体的出现。免疫染色证实了APOE4人类和小鼠大脑中存在非血管肌成纤维细胞。我们发现APOE4周细胞转变为分泌纤连蛋白的肌成纤维细胞,纤连蛋白促进血管淀粉样蛋白积累。计算和实验分析确定TGF-β信号增强是这种周细胞向肌成纤维细胞转变的驱动因素。抑制TGF-β可使周细胞覆盖率恢复正常,并将血管纤维化和淀粉样蛋白水平降低至APOE3水平,揭示了一种将APOE4与AD脑血管病变联系起来的可靶向机制。
脑血管疾病是阿尔茨海默病(AD)的一个突出但了解甚少的组成部分。AD最强的遗传风险因素APOE4与多种脑血管病变有关,包括血管淀粉样蛋白积累和纤维化。APOE4还使脑血管变得脆弱,以至于唯一能改变疾病进程的AD治疗药物抗淀粉样蛋白单克隆抗体,因出血和水肿风险高而被警告禁止在APOE4携带者中使用。为了确定APOE4如何影响脑血管细胞和发病机制,我们从APOE4携带者和非携带者中生成了人类脑血管的高分辨率单细胞转录组图谱。在APOE4个体中,我们发现微血管周细胞数量显著减少。值得注意的是,APOE4携带者中周细胞的缺失伴随着一群独特的壁细胞的出现,这些壁细胞的特征是收缩和细胞外基质(ECM)基因高表达,这是肌成纤维细胞的标志。免疫染色显示,在APOE4人类海马体的微血管周围存在肌成纤维细胞,而在年龄匹配的APOE3/3对照组中不存在,即使在AD病例中也是如此。肌成纤维细胞的存在与血管周围纤连蛋白和淀粉样蛋白的显著增加相一致。在老年APOE4/4小鼠而非APOE3/3小鼠的微血管周围也存在肌成纤维细胞,这表明肌成纤维细胞的出现是APOE4基因型的直接影响,而非处理人类组织的技术假象。为了确定APOE4介导的肌成纤维细胞的机制和功能影响,我们利用了源自诱导多能干细胞的血管化人类脑组织(miBrain)。与死后人类大脑相似,APOE4/4 miBrain显示微血管周细胞覆盖率显著降低,同时出现共同表达ECM和收缩基因的肌成纤维细胞。谱系追踪和基因混合实验证实,肌成纤维细胞起源于APOE4周细胞,并分泌富含纤连蛋白的ECM。在APOE4壁细胞中敲低纤连蛋白可显著减少血管淀粉样蛋白积累。为了确定APOE4大脑中肌成纤维细胞样细胞是如何产生的,我们对死后人类单细胞转录组脑血管图谱进行了计算分析(NicheNet)。这预测TGF-β是周细胞向肌成纤维细胞转变的首要因果驱动因素。与这一预测一致,我们发现与APOE3对照组相比,星形胶质细胞中的TGF-β配体和壁细胞中的受体显著上调。对APOE4 miBrain中TGF-β信号进行化学和基因抑制可显著减少肌成纤维细胞的存在,同时增加周细胞微血管覆盖率,并最终将血管纤维化和淀粉样蛋白积累降低至APOE3水平。通过综合采用对人类死后大脑、APOE人源化小鼠和人类iPSC衍生的血管化脑组织进行分析的三管齐下方法,我们证明小鼠和人类脑组织中的APOE4会导致TGF-β信号增强,促进周细胞向肌成纤维细胞转变,从而导致血管纤维化和淀粉样蛋白沉积。这为APOE4脑血管功能障碍的潜在机制提供了关键见解,突出了针对主要AD风险人群的新诊断和治疗策略。