Suppr超能文献

2型糖尿病患者颈动脉内膜中层增厚风险预测列线图的开发与验证

Development and validation of a risk predictive nomogram for carotid intima-media thickening in patients with type 2 diabetes.

作者信息

Zheng Yongqi, Tuo Luni, Xiao Jie, Ling Runzi, Yan Lei

机构信息

Department of Ultrasound, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.

Department of Ultrasound, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.

出版信息

Acta Diabetol. 2025 Sep 18. doi: 10.1007/s00592-025-02584-2.

Abstract

AIM

Carotid intima-media thickness (CIMT) serves as a valuable cardiovascular risk marker in type 2 diabetes mellitus (T2DM). We aimed to develop and validate a nomogram incorporating novel indicators, including the triglyceride-glucose (TyG) index, to predict CIMT thickening in T2DM.

METHODS

In this retrospective study of 804 patients with T2DM, we employed least absolute shrinkage and selection operator regression followed by stepwise regression for predictor selection. Six machine learning models were evaluated, with model selection based on the area under the receiver operating characteristic curve (AUROC). The optimal model was used to develop the nomogram, assessed using AUROC, calibration curves, decision curve analysis (DCA), and SHapley Additive exPlanations (SHAP) for feature importance.

RESULTS

Independent predictors of CIMT thickening in T2DM included age, body mass index, current smoking status, regular exercise habits, glycated hemoglobin, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and TyG index. Logistic regression demonstrated excellent predictive performance and was selected for nomogram development. The predictive model showed strong discriminative ability and good calibration in both the training and testing datasets. DCA confirmed its clinical utility across relevant risk thresholds, with SHAP analysis identifying age as the most influential predictor.

CONCLUSIONS

This study developed and validated a nomogram integrating routine clinical parameters and novel indicators, including the TyG index, to assess the risk of CIMT thickening in T2DM patients. This nomogram provides an evidence-based tool to help clinicians identify high-risk patients and guide early therapeutic interventions.

摘要

目的

颈动脉内膜中层厚度(CIMT)是2型糖尿病(T2DM)中一种有价值的心血管风险标志物。我们旨在开发并验证一种列线图,纳入包括甘油三酯-葡萄糖(TyG)指数在内的新指标,以预测T2DM患者的CIMT增厚情况。

方法

在这项对804例T2DM患者的回顾性研究中,我们采用最小绝对收缩和选择算子回归,随后进行逐步回归以选择预测因子。评估了六种机器学习模型,基于受试者操作特征曲线下面积(AUROC)进行模型选择。使用最优模型来开发列线图,通过AUROC、校准曲线、决策曲线分析(DCA)以及用于特征重要性分析的SHapley加性解释(SHAP)对其进行评估。

结果

T2DM患者CIMT增厚的独立预测因子包括年龄、体重指数、当前吸烟状况、规律运动习惯、糖化血红蛋白、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇以及TyG指数。逻辑回归显示出优异的预测性能,并被选用于列线图开发。该预测模型在训练集和测试集中均表现出强大的判别能力和良好的校准。DCA证实了其在相关风险阈值范围内的临床实用性,SHAP分析确定年龄是最具影响力的预测因子。

结论

本研究开发并验证了一种整合常规临床参数和新指标(包括TyG指数)的列线图,用于评估T2DM患者CIMT增厚的风险。该列线图提供了一种基于证据的工具,以帮助临床医生识别高危患者并指导早期治疗干预。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验