Suppr超能文献

预测腰椎椎板切除术和椎间盘切除术后手术部位感染:一种前沿算法方法,将集成堆叠纳入当前最先进的自动化机器学习技术。

Predicting Surgical Site Infection after Lumbar Laminectomy and Discectomy: A Cutting-edge Algorithmic Approach by Incorporating Ensembled Stacking into the Current State-of-the-art for Automated Machine Learning.

作者信息

Bangash Ali Haider, Mani Kyle, Goldman Samuel N, Fluss Rose, Kirnaz Sertac, Eleswarapu Ananth S, Fourman Mitchell S, Gelfand Yaroslav, Murthy Saikiran G, Yassari Reza, De la Garza Ramos Rafael

机构信息

Department of Neurosurgery, Montefiore Medical Center, Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA.

Albert Einstein College of Medicine, Bronx, NY, USA.

出版信息

Neurosurg Rev. 2025 Sep 18;48(1):653. doi: 10.1007/s10143-025-03766-w.

Abstract

To develop an algorithmic approach for predicting surgical site infections (SSIs) in patients undergoing lumbar laminectomy and discectomy for adult degenerative spinal disease (DSD) by incorporating ensembled stacking into state-of-the-art (SOTA) automated machine learning (aML). The study utilized a comprehensive dataset from a prospective multicenter surveillance study on SSIs following lumbar laminectomy and discectomy to manage adult DSD. The Google Colab environment was adopted to load the dataset using Python programming language. Nine algorithms, including eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), Neural Network (NN), Categorical Boosting (CatBoost), and Random Forest (RF), were adopted with hyperparameter tuning using the current SOTA for aML. Ensembling of the developed algorithmic models was carried out, followed by stacking and ensembled stacking. Five-fold stratified, shuffled cross-validation was implemented. The macro-weighted average Area Under the Receiver Operating Curve (mWA-AUROC) analysis was used to evaluate the discriminating classification ability of the developed models along with other evaluation metrics. A stacked ensemble algorithmic model, comprising a stacked XGBoost model and an ensemble of XGBoost, NN, CatBoost, LGBM, and RF algorithmic models, achieved an mWA-AUROC of 0.994, an accuracy of 98.7%, a sensitivity of 90% (95% CI: 68.30% - 98.77%) and a specificity of 98.81% (95% CI: 98.15% - 99.28%) upon predicting SSI. The top-weighted constituent model, XGBoost-20, identified operative time, smoking status, and patient age as the most significant predictors of SSI. We have made the development architecture of the algorithmic model available at GitHub for external validation. This study presented a novel algorithmic approach that integrated ensembled stacking into the current SOTA for aML to predict SSIs following lumbar laminectomy and discectomy procedures for adult DSD management. The performance of the stacked ensemble model highlighted its potential to serve as a valuable tool for clinicians, enabling more informed decision-making, optimized resource utilization, and enhanced patient outcomes in spine surgery. Future research should focus on validating the performance of the model in diverse clinical settings and exploring its integration into clinical practice.

摘要

通过将集成堆叠纳入到最先进的(SOTA)自动化机器学习(aML)中,开发一种算法方法来预测因成人退行性脊柱疾病(DSD)接受腰椎椎板切除术和椎间盘切除术患者的手术部位感染(SSI)。该研究使用了一个前瞻性多中心监测研究的综合数据集,该研究针对腰椎椎板切除术和椎间盘切除术后的SSI以管理成人DSD。采用谷歌Colab环境,使用Python编程语言加载数据集。采用了九种算法,包括极端梯度提升(XGBoost)、轻量级梯度提升机(LGBM)、神经网络(NN)、分类提升(CatBoost)和随机森林(RF),并使用当前的SOTA进行aML超参数调整。对开发的算法模型进行集成,随后进行堆叠和集成堆叠。实施了五折分层随机交叉验证。使用宏加权平均受试者工作特征曲线下面积(mWA-AUROC)分析以及其他评估指标来评估开发模型的判别分类能力。一个堆叠集成算法模型,由一个堆叠的XGBoost模型以及XGBoost、NN、CatBoost、LGBM和RF算法模型的集成组成,在预测SSI时,mWA-AUROC为0.994,准确率为98.7%,灵敏度为90%(95%CI:68.30% - 98.77%),特异性为98.81%(95%CI:98.15% - 99.28%)。权重最高的组成模型XGBoost-20将手术时间、吸烟状况和患者年龄确定为SSI的最重要预测因素。我们已将算法模型的开发架构发布在GitHub上以供外部验证。本研究提出了一种新颖的算法方法,该方法将集成堆叠纳入当前的SOTA用于aML,以预测因成人DSD管理而进行的腰椎椎板切除术和椎间盘切除术后的SSI。堆叠集成模型的性能突出了其作为临床医生有价值工具的潜力,能够在脊柱手术中实现更明智的决策、优化资源利用并改善患者预后。未来的研究应侧重于在不同临床环境中验证该模型的性能,并探索将其整合到临床实践中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验