Suppr超能文献

探索6-溴-3-甲基喹啉类似物作为前列腺素F2α抑制剂的效力。

Exploring the potency of 6-bromo-3-methylquinoline analogues as prostaglandin F2α inhibitors.

作者信息

Sarkar Kaushik, Yadav Sandhya, Binsaleh Ammena Y, Al-Hoshani Nawal, Das Rajesh Kumar

机构信息

Department of Chemistry, 30189 University of North Bengal , Darjeeling, West Bengal, India.

Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

出版信息

Z Naturforsch C J Biosci. 2025 Sep 17. doi: 10.1515/znc-2025-0116.

Abstract

Prostaglandin F2α (PGF2α) is associated with preterm labor and preterm birth. PGF2α inhibitors have thus proven to be a promising target in the development of lead compounds to prevent preterm birth. In this work, Quantitative Structural Activity Relationship (QSAR) was implemented on a dataset of 77 compounds of 6-bromo-3-methylquinoline analogues using statistical approach and random selection in the QSARINS software. The Genetic Algorithm-Multiple Linear Regression (GA-MLR) approach was used to predict the best model (  = 0.8943 and  = 0.8836). The inclusion of descriptors FNSA-2 and WV.mass resulted in a well-fitted and highly predictable model. Artificial neural network (ANN) analysis was also carried out to validate the model effectiveness. Twenty eight new molecules with better predicted biological activity (pIC50) were designed. The binding energy from the docking study of seven compounds have shown higher binding activity than P10 into prostaglandin F synthase protein (PDB ID: 2F38). The stability of protein-ligand complex was further validated by 100 ns molecular dynamics simulation and MM-PBSA binding free energy. DFT and ADME-toxicity analysis also confirmed their drug-likeness properties. Collectively, our findings highlight novel quinoline derivatives as promising lead candidates, warranting further validation through collaborative and studies.

摘要

前列腺素F2α(PGF2α)与早产相关。因此,PGF2α抑制剂已被证明是开发预防早产先导化合物的一个有前景的靶点。在这项工作中,使用统计方法并在QSARINS软件中进行随机选择,对77种6-溴-3-甲基喹啉类似物的化合物数据集实施了定量构效关系(QSAR)。采用遗传算法-多元线性回归(GA-MLR)方法预测最佳模型(R = 0.8943和Q = 0.8836)。纳入描述符FNSA-2和WV.mass得到了一个拟合良好且预测性高的模型。还进行了人工神经网络(ANN)分析以验证模型的有效性。设计了28个预测生物活性(pIC50)更好的新分子。七种化合物对接研究的结合能显示出比P10与前列腺素F合酶蛋白(PDB ID:2F38)更高的结合活性。通过100 ns分子动力学模拟和MM-PBSA结合自由能进一步验证了蛋白质-配体复合物的稳定性。密度泛函理论(DFT)和药物代谢及毒性(ADME)分析也证实了它们的类药物性质。总的来说,我们的研究结果突出了新型喹啉衍生物作为有前景的先导候选物,值得通过合作和进一步研究进行进一步验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验