Suppr超能文献

DMSF-YOLO:基于动态机制和多尺度特征融合的奶牛行为识别算法

DMSF-YOLO: Cow Behavior Recognition Algorithm Based on Dynamic Mechanism and Multi-Scale Feature Fusion.

作者信息

Wu Changfeng, Fang Jiandong, Wang Xiuling, Zhao Yudong

机构信息

College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.

Inner Mongolia Key Laboratory of Intelligent Perception and System Engineering, Hohhot 010080, China.

出版信息

Sensors (Basel). 2025 May 31;25(11):3479. doi: 10.3390/s25113479.

Abstract

The behavioral changes of dairy cows directly reflect their health status, and observing the behavioral changes of dairy cows can provide a scientific basis for dairy farms so managers can take timely measures to intervene and effectively prevent diseases. Because of the complex background, multi-scale behavior changes of dairy cows, similar behavior, and difficulty in detecting small targets in the actual dairy farm environment, this study proposes a dairy cow behavior recognition algorithm, DMSF-YOLO, based on dynamic mechanism and multi-scale feature fusion, which can quickly and accurately identify the lying, standing, walking, eating, drinking and mounting behaviors of dairy cows. For the problem in multi-scale behavior changes of dairy cows, a multi-scale convolution module (MSFConv) is designed, and some C3k2 modules of the backbone network and neck network are replaced with MSFConv, which can extract cow behavior information of different scales and perform multi-scale feature fusion. Secondly, the C2BRA multi-scale feature extraction module is designed to replace the C2PSA module, which can dynamically select the important areas according to the two-layer routing attention mechanism to extract feature information at different scales and enhance the multi-scale feature extraction capability of the model, and the same time inhibit the interference of the background information to improve the small target detection capability of the model. Finally, the Dynamic Head detection head is introduced to enhance the model's scale, spatial location, and perception of different tasks, enhance the capacity to extract similar behavioral features of cows, and improve the model's performance in detecting cow multi-scale behaviors in complex environments. The proposed DMSF-YOLO algorithm is experimentally validated on a self-constructed cow behavior dataset, and the experimental results show that the DMSF-YOLO model improves the precision (P), recall (R), mAP50, and F1 values by 2.4%, 3%, 1.6%, and 2.7%, respectively, and the FPS value is also high. The model can suppress the interference of background information, dynamically extract multi-scale features, perform feature fusion, distinguish similar behaviors of cows, enhance the capacity to detect small targets, and significantly improve the recognition accuracy and overall performance of the model. This model can satisfy the need to quickly and accurately identify cow behavior in actual dairy farm environments.

摘要

奶牛的行为变化直接反映其健康状况,观察奶牛的行为变化可为奶牛场提供科学依据,以便管理人员及时采取措施进行干预并有效预防疾病。由于实际奶牛场环境中背景复杂、奶牛行为多尺度变化、行为相似以及小目标检测困难等问题,本研究提出了一种基于动态机制和多尺度特征融合的奶牛行为识别算法DMSF-YOLO,该算法能够快速、准确地识别奶牛的躺卧、站立、行走、进食、饮水和爬跨行为。针对奶牛行为多尺度变化问题,设计了多尺度卷积模块(MSFConv),并将骨干网络和颈部网络的部分C3k2模块替换为MSFConv,其能够提取不同尺度的奶牛行为信息并进行多尺度特征融合。其次,设计了C2BRA多尺度特征提取模块来替换C2PSA模块,该模块可根据两层路由注意力机制动态选择重要区域,以提取不同尺度的特征信息,增强模型的多尺度特征提取能力,同时抑制背景信息的干扰,提高模型的小目标检测能力。最后,引入动态头部检测头,增强模型对尺度、空间位置以及不同任务的感知能力,提升提取奶牛相似行为特征的能力,提高模型在复杂环境下检测奶牛多尺度行为的性能。所提出的DMSF-YOLO算法在自行构建的奶牛行为数据集上进行了实验验证,实验结果表明,DMSF-YOLO模型的精确率(P)、召回率(R)、mAP50和F1值分别提高了2.4%、3%、1.6%和2.7%,且帧率(FPS)值也较高。该模型能够抑制背景信息的干扰,动态提取多尺度特征,进行特征融合,区分奶牛的相似行为,增强小目标检测能力,显著提高模型的识别准确率和整体性能。该模型能够满足在实际奶牛场环境中快速、准确识别奶牛行为的需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验