Suppr超能文献

利用基因组学和人工智能-机器学习方法诊断非结核分枝杆菌感染:范围、进展与挑战

Diagnosis of nontuberculous mycobacterial infections using genomics and artificial intelligence-machine learning approaches: scope, progress and challenges.

作者信息

Murthy Madhan Kumar, Gupta Vivek Kumar, Maurya Anand Prakash

机构信息

Department of Immunology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR-NJIL&OMD), Agra, Uttar Pradesh, India.

Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR-NJIL&OMD), Agra, Uttar Pradesh, India.

出版信息

Front Microbiol. 2025 Sep 3;16:1665685. doi: 10.3389/fmicb.2025.1665685. eCollection 2025.

Abstract

The nontuberculous mycobacterial (NTM) infections cause morbidity and mortality in individuals who are immunocompromised and those with lung conditions. The timely diagnosis of NTM infections is thus the need of the hour for appropriate management of the disease. In this context, genomics has played a pivotal role in diagnosis of NTM by targeting various conserved regions which are useful for species identification and diagnosis. Also, the exploring of whole genome of nontuberculous mycobacteria has made species identification easier and has revolutionized the diagnostic landscape of NTM. The refinement of Whole Genome Sequencing (WGS) and the advent of targeted Next Generation Sequencing (tNGS) and metagenomic NGS (mNGS) has helped in bringing down the cost without compromising the quality in NTM diagnostics. The advent of artificial intelligence (AI) technologies has made NTM diagnosis even easier by analyzing complex genomic data and providing faster results. Thus, this comprehensive review discusses the strides made in genomics and AI based approaches in the diagnosis of NTM infections and the way forward for harnessing this potential to the maximum for the benefit of mankind.

摘要

非结核分枝杆菌(NTM)感染会导致免疫功能低下者以及患有肺部疾病者发病和死亡。因此,及时诊断NTM感染是当前对该疾病进行适当管理的迫切需求。在这种背景下,基因组学通过靶向各种保守区域在NTM诊断中发挥了关键作用,这些保守区域有助于物种鉴定和诊断。此外,对非结核分枝杆菌全基因组的探索使物种鉴定变得更加容易,并彻底改变了NTM的诊断格局。全基因组测序(WGS)的改进以及靶向新一代测序(tNGS)和宏基因组NGS(mNGS)的出现有助于在不影响NTM诊断质量的情况下降低成本。人工智能(AI)技术的出现通过分析复杂的基因组数据并提供更快的结果,使NTM诊断变得更加容易。因此,这篇综述讨论了基于基因组学和AI的方法在NTM感染诊断方面取得的进展以及为最大程度利用这一潜力造福人类的未来发展方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验