Alarifi Mohammad
Assistant professor at Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
Post doc at School of Health Studies, Northern Illinois University, DeKalb, IL, 60115, USA.
Br J Radiol. 2025 Sep 12. doi: 10.1093/bjr/tqaf222.
To evaluate U.S. radiologists' attitudes toward artificial intelligence (AI) in radiology, identify demographic factors influencing these perceptions, and analyze the potential challenges and opportunities AI integration presents in radiological practice.
A cross-sectional survey of 322 board-certified radiologists was conducted using Amazon Mechanical Turk (MTurk) and Qualtrics. The survey collected demographic data (age, gender, experience, and subspecialty) and assessed attitudes toward AI integration in radiology. Pearson's chi-square tests were used to evaluate correlations between demographic variables and perceptions of AI's impact, confidence in its role, and anticipated adoption timelines.
The majority of radiologists (82.9%) indicated that AI would significantly impact radiology. Younger radiologists (<40 years) displayed higher optimism and greater familiarity with AI tools compared to their older counterparts. Statistical analysis revealed significant correlations between age and optimism (χ2 = 47.551, p < 0.001) and between gender and confidence in AI's role (χ2 = 21.982, p < 0.001). Subspecialty differences emerged, with 87.5% of emergency radiologists anticipating AI adoption within 3-5 years, whereas 26.3% of pediatric radiologists predicted adoption within 6-10 years. Notably, younger radiologists showed increased susceptibility to errors when evaluating misleading AI-generated outputs, underscoring the necessity for structured training programs.
The integration of AI in radiology holds transformative potential but poses challenges, including overreliance, varying familiarity levels, and subspecialty-specific disparities. Structured education and robust regulatory frameworks are critical to optimize AI's adoption and minimize associated risks.
This study highlights significant demographic variations in radiologists' attitudes toward AI and underscores the importance of targeted training and interventions to support effective AI integration. These findings add to the existing research by emphasizing the necessity for structured AI training tailored to demographic and subspecialty needs.
评估美国放射科医生对放射学中人工智能(AI)的态度,确定影响这些认知的人口统计学因素,并分析AI整合在放射学实践中带来的潜在挑战和机遇。
使用亚马逊土耳其机器人(MTurk)和Qualtrics对322名获得委员会认证的放射科医生进行了横断面调查。该调查收集了人口统计学数据(年龄、性别、经验和亚专业),并评估了对放射学中AI整合的态度。使用Pearson卡方检验来评估人口统计学变量与对AI影响的认知、对其作用的信心以及预期采用时间之间的相关性。
大多数放射科医生(82.9%)表示AI将对放射学产生重大影响。与年长的放射科医生相比,年轻的放射科医生(<40岁)对AI工具表现出更高的乐观态度和更高的熟悉程度。统计分析显示年龄与乐观态度之间存在显著相关性(χ2 = 47.551,p < 0.001),性别与对AI作用的信心之间存在显著相关性(χ2 = 21.982,p < 0.001)。出现了亚专业差异,87.5%的急诊放射科医生预计在3至5年内采用AI,而26.3%的儿科放射科医生预计在6至10年内采用。值得注意的是,年轻的放射科医生在评估具有误导性的AI生成的输出时更容易出错,这突出了结构化培训计划的必要性。
AI在放射学中的整合具有变革潜力,但也带来了挑战,包括过度依赖、不同的熟悉程度以及亚专业特定的差异。结构化教育和强大的监管框架对于优化AI的采用并将相关风险降至最低至关重要。
本研究突出了放射科医生对AI态度的显著人口统计学差异,并强调了针对性培训和干预措施对支持有效AI整合的重要性。这些发现通过强调针对人口统计学和亚专业需求进行结构化AI培训的必要性,为现有研究增添了内容。