Cheng Ashley P, Dhavarasa Piriththiv, van Heeswyk Jana, Richards Sophia M, Li Xuan, Shapiro Aaron M, Wells Peter G
Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Redox Biol. 2025 Sep 2;87:103856. doi: 10.1016/j.redox.2025.103856.
Oxidatively damaged DNA caused by reactive oxygen species (ROS) in the fetal brain contributes to neurodevelopmental disorders (NDDs), but the mechanism is unclear. We investigated the impact of this DNA damage on the developing fetal brain using a DNA repair-deficient oxoguanine glycosylase 1 (Ogg1) knockout (KO) mouse model, exposed during pregnancy to physiological (saline)- and ethanol (EtOH)-enhanced ROS levels. Oxidatively damaged DNA in saline-exposed Ogg1 KO vs. wild-type (WT) fetal brains was increased, and further enhanced by EtOH exposure. These OGG1-and EtOH-dependent patterns of DNA damage were reflected in: (a) increased gene dysregulation in saline-exposed KO brains, and greatly exacerbated by EtOH, notably in the long-term synaptic potentiation pathway, crucial for learning and memory; (b) impaired mitochondrial metabolism in cultured primary Ogg1 KO neurons; and, (c) sex-dependent learning and memory disorders. These results suggest oxidatively damaged DNA in DNA repair-deficient fetal brains contributes to NDDs by altering gene expression and mitochondrial metabolism.
活性氧(ROS)导致的胎儿脑内氧化性DNA损伤会引发神经发育障碍(NDDs),但其机制尚不清楚。我们使用DNA修复缺陷型氧代鸟嘌呤糖基化酶1(Ogg1)基因敲除(KO)小鼠模型,在孕期使其暴露于生理水平(生理盐水)和乙醇(EtOH)增强的ROS水平下,研究了这种DNA损伤对发育中的胎儿脑的影响。与野生型(WT)胎儿脑相比,暴露于生理盐水的Ogg1 KO胎儿脑中氧化性损伤的DNA增加,且乙醇暴露使其进一步增强。这些依赖OGG1和乙醇的DNA损伤模式体现在:(a)暴露于生理盐水的KO脑内基因失调增加,乙醇使其显著加剧,尤其是在对学习和记忆至关重要的长期突触增强途径中;(b)原代培养的Ogg1 KO神经元中线粒体代谢受损;以及(c)性别依赖性学习和记忆障碍。这些结果表明,DNA修复缺陷的胎儿脑中氧化性损伤的DNA通过改变基因表达和线粒体代谢导致神经发育障碍。