Maldonado Juan S, Sepulveda Stephanie, Karthikeyan Sharva, Shirakawa Karina T, Merced Ivian, Radecki Alexander A, Douglas Jordan, Peti Wolfgang, Page Rebecca, Vargas-Rodriguez Oscar
Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, Farmington, CT 06030, United States.
Industrial Biotechnology Program, University of Puerto Rico, Recinto de Mayagüez, Mayagüez, PR 00680, United States.
Nucleic Acids Res. 2025 Sep 5;53(17). doi: 10.1093/nar/gkaf922.
Aminoacyl-tRNA deacylases safeguard the accurate translation of the genetic code by hydrolyzing incorrectly synthesized aminoacyl-tRNAs. Canavanyl-tRNA deacylase (CtdA) was recently shown to protect cells against the toxicity of canavanine (Can), a nonproteinogenic amino acid synthesized and accumulated by leguminous plants. In most organisms, Can is ligated to tRNAArg, causing translation of arginine codons with Can. CtdA prevents Can toxicity by hydrolyzing canavanyl-tRNAArg. Here, we investigated the function, structure, substrate specificity, phylogenetic distribution, and evolution of CtdA. We show that CtdA is essential for preventing Can cytotoxicity in Salmonella enterica, and its heterologous expression can also protect Escherichia coli. By determining the structure of CtdA, we identified its putative binding pocket and residues that modulate enzymatic activity and specificity. We also found that CtdA displays robust specificity for the canavanyl moiety, a feature that contributes to maintaining arginyl-tRNAArg levels unaffected. Finally, we showed that despite their structural homology, CtdA and the aminoacyl-tRNA hydrolytic domain of phenylalanyl-tRNA synthetase are functionally and evolutionarily divergent. Collectively, these results substantially expand our understanding of the CtdA family, providing new insights into its structure, function, and evolution. This work also highlights the diverse mechanisms, unique to each organism, that ensure faithful translation of the genetic code.
氨酰 - tRNA去酰基酶通过水解错误合成的氨酰 - tRNA来保障遗传密码的准确翻译。刀豆氨酸 - tRNA去酰基酶(CtdA)最近被证明可保护细胞免受刀豆氨酸(Can)的毒性影响,刀豆氨酸是豆科植物合成并积累的一种非蛋白质氨基酸。在大多数生物体中,刀豆氨酸会连接到tRNAArg上,导致在精氨酸密码子处用刀豆氨酸进行翻译。CtdA通过水解刀豆氨酰 - tRNAArg来防止刀豆氨酸的毒性。在此,我们研究了CtdA的功能、结构、底物特异性、系统发育分布及进化。我们表明,CtdA对于防止肠炎沙门氏菌中刀豆氨酸的细胞毒性至关重要,其异源表达也能保护大肠杆菌。通过确定CtdA的结构,我们确定了其假定的结合口袋以及调节酶活性和特异性的残基。我们还发现,CtdA对刀豆氨酰部分具有很强的特异性,这一特性有助于维持精氨酰 - tRNAArg水平不受影响。最后,我们表明,尽管CtdA与苯丙氨酰 - tRNA合成酶的氨酰 - tRNA水解结构域在结构上具有同源性,但它们在功能和进化上是不同的。总体而言,这些结果极大地扩展了我们对CtdA家族的理解,为其结构、功能和进化提供了新的见解。这项工作还突出了每种生物体特有的多种机制,这些机制确保了遗传密码的忠实翻译。