Kotchetkov Pavel, Lacoste Baptiste
Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
Microcirculation. 2025 Oct;32(7):e70025. doi: 10.1111/micc.70025.
Transmission electron microscopy (TEM) enables ultrastructural investigation of both organic and nonorganic samples. However, conventional TEM is limited by the acquisition of two-dimensional snapshots, restricting our volumetric understanding of complex ultrastructures. Electron tomography (ET) overcomes this limitation by offering detailed three-dimensional (3D) specimen representation. ET has been widely applied in biology; however, its use for blood-brain barrier (BBB) assessment has been overlooked. The BBB ensures proper brain function by limiting the entrance of blood-borne molecules into the brain and ensuring selective transport. The BBB is disrupted in several pathological conditions, resulting in neuronal damage. Understanding the fine changes underlying BBB disruption requires advanced imaging tools such as ET.
We developed a detailed room temperature electron tomography (RT-ET) method for sample preparation, tomogram generation, 3D segmentation, and applied this approach to assess ultrastructural changes in brain endothelial cells (ECs) after photothrombotic stroke in mice.
Our findings identify altered transcytotic vesicle morphology, as well as remodeling of the endoplasmic reticulum, indicative of cellular stress and impaired vesicular trafficking.
Our toolkit allows for reproducible, high-resolution analysis of brain microvascular pathology. This new RT-ET approach uncovers previously inaccessible ultrastructural alterations in ECs following ischemic stroke in mice, offering new insight into mechanisms of BBB disruption.
透射电子显微镜(TEM)能够对有机和无机样品进行超微结构研究。然而,传统的TEM受限于二维快照的获取,限制了我们对复杂超微结构的体积理解。电子断层扫描(ET)通过提供详细的三维(3D)标本表示克服了这一限制。ET已在生物学中广泛应用;然而,其在血脑屏障(BBB)评估中的应用却被忽视了。血脑屏障通过限制血源性分子进入大脑并确保选择性转运来保证大脑的正常功能。在几种病理状态下血脑屏障会被破坏,导致神经元损伤。了解血脑屏障破坏背后的细微变化需要先进的成像工具,如ET。
我们开发了一种详细的室温电子断层扫描(RT-ET)方法用于样品制备、断层图像生成、三维分割,并将此方法应用于评估小鼠光血栓性中风后脑内皮细胞(ECs)的超微结构变化。
我们的研究结果确定了转胞吞小泡形态的改变以及内质网的重塑,这表明细胞应激和小泡运输受损。
我们的工具包允许对脑微血管病理学进行可重复的高分辨率分析。这种新的RT-ET方法揭示了小鼠缺血性中风后内皮细胞中以前无法获得的超微结构改变,为血脑屏障破坏机制提供了新的见解。