Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Nat Neurosci. 2020 Dec;23(12):1589-1596. doi: 10.1038/s41593-020-00729-w. Epub 2020 Nov 2.
Information processing in the brain depends on specialized organization of neurotransmitter receptors and scaffolding proteins within the postsynaptic density. However, how these molecules are organized in situ remains largely unknown. In this study, template-free classification of oversampled sub-tomograms was used to analyze cryo-electron tomograms of hippocampal synapses. We identified type-A GABA receptors (GABARs) in inhibitory synapses and determined their in situ structure at 19-Å resolution. These receptors are organized hierarchically: from GABAR super-complexes with a preferred inter-receptor distance of 11 nm but variable relative angles, through semi-ordered, two-dimensional receptor networks with reduced Voronoi entropy, to mesophasic assembly with a sharp phase boundary. These assemblies likely form via interactions among postsynaptic scaffolding proteins and receptors and align with putative presynaptic vesicle release sites. Such mesophasic self-organization might allow synapses to achieve a 'Goldilocks' state, striking a balance between stability and flexibility and enabling plasticity in information processing.
大脑中的信息处理依赖于突触后密度内神经递质受体和支架蛋白的专门组织。然而,这些分子在原位如何组织在很大程度上仍然未知。在这项研究中,使用无模板的超采样子断层分类来分析海马突触的冷冻电子断层图像。我们在抑制性突触中鉴定出 A 型 GABA 受体(GABARs),并以 19-Å 的分辨率确定了它们在原位的结构。这些受体是分层组织的:从具有 11nm 优选受体间距离但可变相对角度的 GABAR 超复合物,到具有降低的 Voronoi 熵的半有序二维受体网络,再到具有尖锐相界的中间相组装。这些组装可能通过突触后支架蛋白和受体之间的相互作用形成,并与假定的突触前囊泡释放位点对齐。这种中间相的自组织可能使突触达到“恰到好处”的状态,在稳定性和灵活性之间取得平衡,并使信息处理具有可塑性。