Shi Jing-Tian, Xia Xiao-Xuan, Xing Qian-Xi, Chu Yi-Ran, Wang Jian-Xiong, Xu Sheng-Qian
Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
BMJ Open. 2025 Sep 21;15(9):e101576. doi: 10.1136/bmjopen-2025-101576.
To investigate the correlation between fat-to-muscle ratio (FMR) or other body composition and secondary osteoporosis (OP) in patients with rheumatoid arthritis (RA) and to develop a predictive model using FMR and related clinical factors.
Cross-sectional observational study with machine learning-based risk modelling.
Tertiary hospital in eastern China, secondary care level.
A total of 670 hospitalised RA patients (135 males and 535 females; aged 58.00 (50.00-67.00) years; disease duration 8.00 (2.00-16.00) years) and 126 healthy controls were recruited between October 2019 and October 2022. There were no differences in basic indicators such as gender, age distribution and body mass index between the two groups. RA diagnosis followed American College of Rheumatology (ACR) 1987 or ACR/European League Against Rheumatism 2010 criteria. Exclusion criteria included major organ dysfunction, endocrine disease, infection or long-term hormone or psychotropic drug use.
Primary outcomes included total skeletal muscle mass, fat mass, FMR measured by bioelectrical impedance analysis and bone mineral density measured by dual-energy X-ray absorptiometry. Secondary outcomes included RA disease activity scores (clinical disease activity index (CDAI), simplified disease activity index, disease activity score in 28 joints (DAS28)) and glucocorticoid use. Logistic regression and four additional machine learning algorithms were used to build predictive models for OP.
The RA group (age, 58.00; duration, 8.00; DAS28, 5.03; rheumatoid factor, 104.75; C-reactive protein, 25.65; erythrocyte sedimentation rate (ESR), 59.00) exhibited reduced total skeletal muscle mass (19.49 vs 25.38, p<0.001), hip bone mineral density (0.90 vs 1.15, p<0.001) and L1-4 bone mineral density (0.86 vs 1.08, p<0.001), alongside increased total fat mass (18.33 vs 16.37, p=0.020) and FMR (0.98 vs 0.68, p<0.001). Total fat mass was positively correlated with simplified and CDAI (p<0.001). Total skeletal muscle mass was negatively correlated with ESR (p=0.001) and positively correlated with both L1-4 and hip bone mineral density (p<0.001). FMR showed a positive correlation with clinical disease activity index (p<0.001). There were significant differences in total fat mass and FMR among RA patients with varying disease activity levels (p<0.001). RA patients with concomitant OP or using glucocorticoids had a higher total fat mass and FMR than their respective control groups, with only total skeletal muscle mass levels being lower (p<0.01). We developed predictive models using multiple machine learning algorithms, which identified that both age and FMR were key factors associated with secondary OP in RA patients. Subgroup analysis identified an interaction effect between FMR and gender and restricted cubic spline fitted the dose-response relationship between FMR and OP.
FMR may serve as a useful clinical indicator of secondary OP in RA patients. A model based on FMR and associated risk factors can predict the possibility of secondary OP.
探讨类风湿关节炎(RA)患者的脂肪与肌肉比率(FMR)或其他身体成分与继发性骨质疏松症(OP)之间的相关性,并使用FMR和相关临床因素建立预测模型。
基于机器学习风险建模的横断面观察性研究。
中国东部的三级医院,二级护理水平。
2019年10月至2022年10月期间,共招募了670例住院RA患者(135例男性和535例女性;年龄58.00(50.00 - 67.00)岁;病程8.00(2.00 - 16.00)年)和126名健康对照者。两组在性别、年龄分布和体重指数等基本指标上无差异。RA诊断符合美国风湿病学会(ACR)1987年或ACR/欧洲抗风湿病联盟2010年标准。排除标准包括主要器官功能障碍、内分泌疾病、感染或长期使用激素或精神药物。
主要结局包括骨骼肌总量、脂肪量、通过生物电阻抗分析测量的FMR以及通过双能X线吸收法测量的骨密度。次要结局包括RA疾病活动评分(临床疾病活动指数(CDAI)、简化疾病活动指数、28个关节疾病活动评分(DAS28))和糖皮质激素使用情况。采用逻辑回归和另外四种机器学习算法建立OP的预测模型。
RA组(年龄58.00;病程8.00;DAS28 5.03;类风湿因子104.75;C反应蛋白25.65;红细胞沉降率(ESR)59.00)的骨骼肌总量降低(19.49对25.38,p<0.001)、髋部骨密度降低(0.90对1.15,p<0.001)以及L1 - 4骨密度降低(0.86对1.08,p<0.001),同时总脂肪量增加(18.33对16.37,p = 0.020)和FMR升高(0.98对0.68,p<0.001)。总脂肪量与简化疾病活动指数和CDAI呈正相关(p<0.001)。骨骼肌总量与ESR呈负相关(p = 0.001),与L1 - 4和髋部骨密度均呈正相关(p<0.001)。FMR与临床疾病活动指数呈正相关(p<0.001)。不同疾病活动水平的RA患者在总脂肪量和FMR方面存在显著差异(p<0.001)。伴有OP或使用糖皮质激素的RA患者的总脂肪量和FMR高于各自的对照组,仅骨骼肌总量水平较低(p<0.01)。我们使用多种机器学习算法建立了预测模型,确定年龄和FMR均是RA患者继发性OP的关键因素。亚组分析确定了FMR与性别之间的交互作用,限制立方样条拟合了FMR与OP之间的剂量反应关系。
FMR可能是RA患者继发性OP的有用临床指标。基于FMR和相关危险因素的模型可以预测继发性OP的可能性。