Bennequin Daniel, Berthoz Alain
Université Sorbonne Paris Cité, Paris, France.
Collège-de-France, Paris, France.
Front Psychol. 2025 Sep 4;16:1583185. doi: 10.3389/fpsyg.2025.1583185. eCollection 2025.
We present a theory on the neural basis of aesthetic experience, and judgment of beauty. It is based on both empirical facts concerning brain mechanisms and theoretical mathematical theories. We first recall previous evidence that the brain uses several non-Euclidian geometries for perception and action at different scales of space (personal, peri-personal, near locomotor, environmental, imaginative). This is supported by neuroscience data (brain imaging, neuropsychology, movement control, etc.). For example, the movement of drawing obeys specific kinematic rules, that reflect the control by Euclidian and affine geometries. We already formulated the corresponding geometries in brain's networks by using Topos and Stacks theory of the mathematician Alexander Grothendieck. The present article extends the previous proposals by suggesting that a meta-geometry provides the binding between these specialized geometries, by using known higher structures and dynamics (like n-Topos and n-Stacks) for joint perceptions and movements, and other modalities, as concepts, memories or emotions, at different spatial scales domains. We suggest that a form, an object, a movement, an environment, an event, an idea, is perceived as beautiful if the data provided by the senses and programs are embedded in these higher geometries, providing a sort of dynamic recognition, through relations of generalized proportions.
我们提出了一种关于审美体验和美的判断的神经基础的理论。它基于有关大脑机制的实证事实和理论数学理论。我们首先回顾先前的证据,即大脑在不同空间尺度(个人、个人周边、近运动、环境、想象)上使用几种非欧几里得几何进行感知和行动。这得到了神经科学数据(脑成像、神经心理学、运动控制等)的支持。例如,绘画的动作遵循特定的运动学规则,这些规则反映了欧几里得几何和仿射几何的控制。我们已经通过使用数学家亚历山大·格罗滕迪克的拓扑斯和层理论在大脑网络中构建了相应的几何。本文扩展了先前的提议,提出一种元几何通过使用已知的更高结构和动力学(如n-拓扑斯和n-层)在不同空间尺度域中为联合感知和运动以及其他模态(如概念、记忆或情感)提供这些专门几何之间的绑定。我们认为,如果感官和程序提供的数据嵌入在这些更高的几何中,通过广义比例关系提供一种动态识别,那么一种形式、一个物体、一个运动、一个环境、一个事件、一个想法就会被感知为美。