Trivedi Vikrant, Tsujii Naohito, Mori Takao
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan.
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan.
Sci Technol Adv Mater. 2025 Aug 27;26(1):2551486. doi: 10.1080/14686996.2025.2551486. eCollection 2025.
The pursuit of sustainable thermoelectric materials requires the development of cost-effective and efficient compounds derived from earth-abundant elements. Here, we investigate the effects of samarium (Sm) substitution on the thermoelectric performance of SrSi₂ with compositions Sr Sm Si ( = 0, 0.05, 0.1, 0.15, and 0.2). Substituting Sm for Sr in SrSi₂ enhances the power factor at low substitution levels, while further substitution leads to a decrease, due to increased carrier scattering and reduced Seebeck coefficient. Introducing Sm substitution enhances phonon scattering through point defects, reducing lattice thermal conductivity. A peak figure of merit () of ~0.23 at room temperature is achieved for Sr₀.₉₅Sm₀.₀₅Si₂, demonstrating a 35% improvement over undoped SrSi₂. The weighted mobility of ~285 cm/V·s and the tailored thermal transport emphasize the role of Sm substitution in modulating both electronic and thermal properties. These findings establish Sr Sm Si as a promising candidate for next-generation thermoelectric devices.
对可持续热电材料的追求需要开发由储量丰富的元素衍生而来的具有成本效益且高效的化合物。在此,我们研究了钐(Sm)替代对组成式为SrₓSm₁₋ₓSi₂(x = 0、0.05、0.1、0.15和0.2)的SrSi₂热电性能的影响。在SrSi₂中用Sm替代Sr在低替代水平时提高了功率因数,而进一步替代则导致功率因数下降,这是由于载流子散射增加和塞贝克系数降低所致。引入Sm替代通过点缺陷增强了声子散射,降低了晶格热导率。对于Sr₀.₉₅Sm₀.₀₅Si₂,在室温下实现了约0.23的峰值优值(ZT),表明比未掺杂的SrSi₂提高了35%。约285 cm²/V·s的加权迁移率以及定制的热传输强调了Sm替代在调节电子和热性能方面的作用。这些发现确立了SrₓSm₁₋ₓSi₂作为下一代热电装置的有前景的候选材料。