Suppr超能文献

ScIsoX: a multidimensional framework for measuring isoform-level transcriptomic complexity in single cells.

作者信息

Wu Siyuan, Schmitz Ulf

机构信息

Computational Biomedicine Lab, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.

Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia.

出版信息

Genome Biol. 2025 Sep 22;26(1):289. doi: 10.1186/s13059-025-03758-5.

Abstract

Single-cell isoform analysis enables high-resolution characterization of transcript expression, yet analytical frameworks to systematically measure transcriptomic complexity are lacking. Here, we introduce ScIsoX, a computational framework that integrates a novel hierarchical data structure, a suite of complexity metrics, and dedicated visualization tools for isoform-level analysis. ScIsoX supports systematic exploration of global and cell-type-specific isoform expression patterns arising from alternative splicing, revealing multidimensional complexity signatures across diverse datasets-insights often missed by conventional gene-level approaches. We demonstrate the utility of ScIsoX across multiple real-world single-cell isoform sequencing datasets, showcasing its potential as a general framework for transcriptomic complexity analysis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c65/12455757/527a1056197b/13059_2025_3758_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验