Suppr超能文献

使用营养指数和体重指数评估日本冠心病患者的营养不良患病率:一项回顾性真实世界研究

Prevalence and Assessment of Malnutrition Using Nutritional Indices and Body Mass Index in Relation to Coronary Artery Disease in Japanese Patients: A Retrospective Real-World Study.

作者信息

Saulam Jennifer, Mikami Fumiaki, Murakami Kazushi, Saulam Jacqueline, Kuriakose Joseph, Minamino Tetsuo, Yokoi Hideto

机构信息

Department of Medical Informatics, Faculty of Medicine, Kagawa University, Kagawa, JPN.

Department of Food Processing and Nutrition, Karnataka State Akkamahadevi Women's University, Karnataka, IND.

出版信息

Cureus. 2025 Aug 22;17(8):e90738. doi: 10.7759/cureus.90738. eCollection 2025 Aug.

Abstract

Background Cardiovascular disease (CVD) remains a leading cause of mortality worldwide, with a disproportionate burden in low- and middle-income countries (LMICs). While malnutrition is a recognized clinical issue, its role as a contributing factor to coronary artery disease (CAD) is often overlooked. This study aimed to assess the prevalence of malnutrition and its association with significant coronary artery stenosis (CAS) using routinely available nutritional indices, in combination with body mass index (BMI), in a real-world Japanese patient cohort. Methods This retrospective cross-sectional study included 1,107 patients who underwent coronary angiography (CAG) at Kagawa University Hospital, Kagawa, Japan, between January 2006 and December 2023. Nutritional status was assessed using various indices: controlling nutritional status (CONUT), prognostic nutritional index (PNI), and geriatric nutritional risk index/nutritional risk index (GNRI/NRI). Malnutrition was defined using standard clinical thresholds. CAS was defined as 75% or greater luminal narrowing in at least one coronary artery. Multivariable logistic regression models were developed to assess the association between nutritional indices and CAS, adjusting for age, sex, smoking status, and lipid levels. Interaction terms were included to evaluate the modifying effect of BMI (continuous). Additional risk phenotypes were created by combining nutritional indices and BMI based on the 75th percentile. Results Significant CAS was identified in 45.4% of the study population. Malnutrition prevalence using standard clinical cutoffs ranged from 26.8% using CONUT to over 70% with GNRI/NRI and PNI, with poor inter-index agreement (Fleiss' κ = 0.227). Interaction analysis showed that severe-risk GNRI/NRI scores were positively associated with CAS at higher BMI levels, while mild-risk scores showed inverse associations. Several phenotype-based combinations were also significantly associated with increased CAS risk, including high CONUT + normal BMI (Odds ratio, OR = 1.88), low CONUT + high BMI (OR = 1.75), and high PNI + high BMI (OR = 1.92). Among predictive models, the CONUT + BMI combination demonstrated the best overall discriminative performance (AUC = 0.71; sensitivity = 78.6%), while the PNI + BMI model had the highest positive predictive value (66.7%). Conclusion Malnutrition is prevalent among patients undergoing CAG and is significantly associated with CAS, particularly when assessed in combination with BMI. Our findings suggest that GNRI/NRI, when interacted with BMI as a continuous variable, provides a sensitive gradient of risk, while percentile-based combinations using CONUT or PNI offer clear categorical phenotypes for risk stratification. These accessible, routinely used biomarkers and EMR-based indices can serve as practical tools for early risk identification, especially in resource-limited LMIC settings. Prospective studies are warranted to determine whether targeted nutritional interventions based on these indices can improve cardiovascular outcomes.

摘要

背景 心血管疾病(CVD)仍是全球主要的死亡原因,在低收入和中等收入国家(LMICs)负担尤为沉重。虽然营养不良是一个公认的临床问题,但其作为冠状动脉疾病(CAD)促成因素的作用常常被忽视。本研究旨在使用常规可得的营养指标,并结合体重指数(BMI),评估日本真实世界患者队列中营养不良的患病率及其与显著冠状动脉狭窄(CAS)的关联。

方法 这项回顾性横断面研究纳入了2006年1月至2023年12月期间在日本香川县香川大学医院接受冠状动脉造影(CAG)的1107例患者。使用多种指标评估营养状况:控制营养状况(CONUT)、预后营养指数(PNI)以及老年营养风险指数/营养风险指数(GNRI/NRI)。采用标准临床阈值定义营养不良。将CAS定义为至少一支冠状动脉管腔狭窄75%或以上。建立多变量逻辑回归模型来评估营养指标与CAS之间的关联,并对年龄、性别、吸烟状况和血脂水平进行校正。纳入交互项以评估BMI(连续变量)的修正作用。基于第75百分位数,通过将营养指标与BMI相结合创建额外的风险表型。

结果 研究人群中45.4%被确定存在显著CAS。使用标准临床切点时,营养不良患病率从CONUT的26.8%到GNRI/NRI和PNI的超过70%不等,各指标间一致性较差(Fleiss' κ = 0.227)。交互分析显示,在较高BMI水平时,高风险GNRI/NRI评分与CAS呈正相关,而低风险评分呈负相关。几种基于表型的组合也与CAS风险增加显著相关,包括高CONUT + 正常BMI(比值比,OR = 1.88)、低CONUT + 高BMI(OR = 1.75)以及高PNI + 高BMI(OR = 1.92)。在预测模型中,CONUT + BMI组合总体判别性能最佳(曲线下面积 = 0.71;灵敏度 = 78.6%),而PNI + BMI模型阳性预测值最高(66.7%)。

结论 在接受CAG的患者中营养不良普遍存在,且与CAS显著相关,尤其是在与BMI联合评估时。我们的研究结果表明,当GNRI/NRI作为连续变量与BMI相互作用时,可提供敏感的风险梯度,而使用CONUT或PNI基于百分位数的组合可为风险分层提供明确的分类表型。这些易于获取、常规使用的生物标志物和基于电子病历的指标可作为早期风险识别的实用工具,尤其是在资源有限的低收入和中等收入国家环境中。有必要进行前瞻性研究以确定基于这些指标的针对性营养干预是否能改善心血管结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6a/12450357/04d33155bff1/cureus-0017-00000090738-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验