Huo Xingyu, Tong Yanjun, Wang Mingwei, Ji Ruian, Zhu Yiwen, Yang Hailin, Feng Shoushuai
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
Nucleic Acids Res. 2025 Sep 23;53(18). doi: 10.1093/nar/gkaf943.
Severe environmental conditions enhance the resilience of biomining microorganisms to elevated metal ion concentrations. The mechanism of how biomining microorganisms resist metal ions is poorly understood. We identified a novel reactive sulfur species (RSS)-sensitive MarR family transcription factor (SscRAc) in Acidithiobacillus caldus by persulfidation proteomics and observed increase in RSS and protein persulfidation levels under 250 mM Cu2+ stress. The deletion of sscRAc gene via CRISPR-Cas9 and conjugative transfer technology enhanced copper sensitivity in A. caldus. ChIP-seq/qRT-PCR revealed that SscRAc regulates copper detoxification by blocking efflux pumps and stimulating RSS metabolism. LC-MS/MS analysis revealed that both Cys74 and Cys78 in SscRAc interact with RSS and undergo persulfidation, resulting in the dissociation of the protein from the promoter-DNA of target genes. Upstream signaling analysis indicated that copper-sensitive repressor CsoRAc, regulated by SscRAc, inversely regulates SscRAc, thereby jointly enabling copper-RSS signal transduction. In conclusion, we identify SscRAc as the first RSS-dependent transcriptional switch directly linking copper toxicity with the persulfidation signaling pathway in extremophiles.
恶劣的环境条件增强了生物采矿微生物对升高的金属离子浓度的耐受性。生物采矿微生物如何抵抗金属离子的机制尚不清楚。我们通过过硫化蛋白质组学在嗜热嗜酸硫杆菌中鉴定出一种新型的对反应性硫物种(RSS)敏感的MarR家族转录因子(SscRAc),并观察到在250 mM Cu2+胁迫下RSS和蛋白质过硫化水平增加。通过CRISPR-Cas9和接合转移技术缺失sscRAc基因增强了嗜热嗜酸硫杆菌对铜的敏感性。ChIP-seq/qRT-PCR表明,SscRAc通过阻断外排泵和刺激RSS代谢来调节铜解毒。LC-MS/MS分析表明,SscRAc中的Cys74和Cys78都与RSS相互作用并发生过硫化,导致蛋白质从靶基因的启动子-DNA上解离。上游信号分析表明,受SscRAc调节的对铜敏感的阻遏物CsoRAc反向调节SscRAc,从而共同实现铜-RSS信号转导。总之,我们将SscRAc鉴定为第一个直接将铜毒性与嗜极端微生物中的过硫化信号通路联系起来的依赖于RSS的转录开关。