Chen Bingliang, He Zhen, Peng Shirong, Li Bingheng, Ou Yuan, Zhuang Ruilin, Xie Ruihui, Huang Hai
Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat- Sen University, Guangzhou, 510120, China.
World J Urol. 2025 Sep 23;43(1):569. doi: 10.1007/s00345-025-05870-4.
Benign Prostatic Hyperplasia (BPH), marked by prostate enlargement, can greatly reduce quality of life. While studies hint at a connection between lipids and BPH, the roles of different lipid types are not well understood. The exact impact and treatment potential of these lipids in BPH are unclear, necessitating more research. Mendelian randomization (MR) provides a rigorous framework for elucidating causal relationships between modifiable exposures and outcomes, by leveraging the random assortment of genetic variants during gametogenesis. The aim of the current study was to systematically explore the underlying causal role of plasma lipids in the risk of BPH via two-sample MR analysis to find novel target for the treatment of BPH.
Using two-sample MR analyses with data from the FinnGene and UK Biobank cohorts, we comprehensively investigated the causal effects of 179 circulating lipids on benign prostatic hyperplasia (BPH) risk. Integrated network pharmacology explored lipids-BPH interactions. lipids target predicted via multi-database screening (SuperPred/TargetNet/PharmMapper/SwissTargetPrediction) with UniProt validation. BPH targets sourced from DisGeNET/GeneCards/TTD/OMIM. Molecular docking performed in Discovery Studio. Shared targets analyzed through PPI networks. Hub genes identified by CytoHubba using four topological algorithms. GO/KEGG enrichment were considered significant with P ≤ 0.05.
Genetically proxied circulating Phosphatidylinositol (18:1_18:1) (Pl(18:1_18:1)) and Phosphatidylcholine (16:0_18:2) (PC(16:0_18:2)) demonstrated significant inverse associations with BPH risk. In FinnGen Biobank, Pl(18:1_18:1) yielded OR = 0.95 (95%CI 0.90-0.99, P = 2.98 × 10⁻³) by IVW, OR = 0.91 (0.86-0.98, P = 7.24 × 10⁻³) by WM, and OR = 0.93 (0.82-1.05, P = 0.25) by MR-Egger; PC(16:0_18:2) showed OR = 0.95 (0.91-0.99, P = 2.43 × 10⁻²), OR = 0.95 (0.90-1.00, P = 4.09 × 10⁻²), OR = 0.93 (0.84-1.02, P = 0.13). In UK Biobank, Pl(18:1_18:1) exhibited OR = 0.88 (0.81-0.95, P = 1.25 × 10⁻²), OR = 0.88 (0.78-0.98, P = 2.26 × 10⁻²), OR = 0.80 (0.67-0.95, P = 2.29 × 10⁻²); PC(16:0_18:2) demonstrated OR = 0.92 (0.86-0.98, P = 9.90 × 10⁻⁴), OR = 0.93 (0.85-1.02, P = 0.10), OR = 0.89 (0.70-1.01, P = 7.98 × 10⁻²). Sensitivity analyses across both the FinnGen and UK Biobank cohorts confirmed robust causal estimates for the identified lipid-BPH relationships. No evidence of disproportionate SNP influence was detected(FinnGene: PC(16:0_18:2) P = 0.024, Pl(18:1_18:1) P = 0.021; UK Biobank: PC(16:0_18:2) P = 0.032, Pl(18:1_18:1) P = 0.041). Advanced MR analyses, supplemented by network pharmacology approaches, suggest that Pl(18:1_18:1) may reduce the risk of BPH by modulating the activity of the epidermal growth factor receptor (EGFR) rather than by altering its expression levels(OR = 1.02 95%CI, 0.93-1.12, P = 0.65 by IVW; OR = 1.07, 95%CI 0.95-1.21, P = 0.28 by WM; OR = 0.95, 95%CI 0.76-1.18, P = 0.65 by MR-Egger).
Our findings collectively emphasize the causal significance of Pl(18:1_18:1) in the pathogenesis of BPH, as evidenced by a comprehensive MR framework. Additionally, our insights from network pharmacology indicate that Pl(18:1_18:1) may act as a therapeutic modulator of BPH by influencing the EGFR pathway. These results not only identify Pl(18:1_18:1) as a promising therapeutic target for BPH management but also establish a robust theoretical foundation for its clinical application in BPH treatment strategies.
良性前列腺增生(BPH)以前列腺肿大为特征,会显著降低生活质量。虽然研究暗示脂质与BPH之间存在联系,但不同类型脂质的作用尚未完全明确。这些脂质在BPH中的具体影响和治疗潜力尚不清楚,因此需要更多研究。孟德尔随机化(MR)通过利用配子发生过程中遗传变异的随机分配,为阐明可改变的暴露因素与结局之间的因果关系提供了一个严谨的框架。本研究的目的是通过两样本MR分析系统地探索血浆脂质在BPH风险中的潜在因果作用,以寻找BPH治疗的新靶点。
使用来自芬兰基因队列和英国生物银行队列的数据进行两样本MR分析,我们全面研究了179种循环脂质对良性前列腺增生(BPH)风险的因果效应。综合网络药理学探索脂质与BPH的相互作用。通过多数据库筛选(SuperPred/TargetNet/PharmMapper/SwissTargetPrediction)预测脂质靶点,并经UniProt验证。BPH靶点来自DisGeNET/GeneCards/TTD/OMIM。在Discovery Studio中进行分子对接。通过蛋白质-蛋白质相互作用(PPI)网络分析共享靶点。使用四种拓扑算法通过CytoHubba识别枢纽基因。当P≤0.05时,基因本体论(GO)/京都基因与基因组百科全书(KEGG)富集被认为具有显著性。
遗传代理的循环磷脂酰肌醇(18:1_18:1)(Pl(18:1_18:1))和磷脂酰胆碱(16:0_18:2)(PC(16:0_18:2))与BPH风险呈显著负相关。在芬兰基因生物银行中,通过逆方差加权法(IVW),Pl(18:1_18:1)的比值比(OR)=0.95(95%置信区间0.90 - 0.99,P = 2.98×10⁻³),通过加权中位数法(WM),OR = 0.91(0.86 - 0.98,P = 7.24×10⁻³),通过MR-Egger法,OR = 0.93(0.82 - 1.05,P = 0.25);PC(16:0_18:2)显示OR = 0.95(0.91 - 0.99,P = 2.43×10⁻²),OR = 0.95(0.90 - 1.00,P = 4.09×10⁻²),OR = 0.93(0.84 - 1.02,P = 0.13)。在英国生物银行中,Pl(18:1_18:1)的OR = 0.88(0.81 - 0.95,P = 1.25×10⁻²),OR = 0.88(0.78 - 0.98,P = 2.26×10⁻²),OR = 0.80(0.67 - 0.95,P = 2.29×10⁻²);PC(16:0_18:2)的OR = 0.92(0.86 - 0.98,P = 9.90×10⁻⁴),OR = 0.93(0.85 - 1.02,P = 0.10),OR = 0.89(0.70 - 1.01,P = 7.98×10⁻²)。对芬兰基因队列和英国生物银行队列进行的敏感性分析证实了所确定的脂质与BPH关系的稳健因果估计。未检测到单核苷酸多态性(SNP)影响不均衡的证据(芬兰基因队列:PC(16:0_18:2) P = 0.024,Pl(18:1_18:1) P = 0.021;英国生物银行:PC(16:0_18:2) P = 0.032,Pl(18:1_18:1) P = 0.041)。先进的MR分析,辅以网络药理学方法,表明Pl(18:1_18:1)可能通过调节表皮生长因子受体(EGFR)的活性而非改变其表达水平来降低BPH风险(通过IVW,OR = 1.02,95%置信区间0.93 - 1.12,P = 0.65;通过WM,OR = 1.07,95%置信区间0.95 - 1.21,P = 0.28;通过MR-Egger,OR = 0.95,95%置信区间0.76 - 1.18,P = 0.65)。
我们的研究结果共同强调了Pl(18:1_18:1)在BPH发病机制中的因果意义,这由一个全面的MR框架所证明。此外,我们从网络药理学获得的见解表明,Pl(18:1_18:1)可能通过影响EGFR途径作为BPH的治疗调节剂。这些结果不仅确定Pl(18:1_18:1)是BPH管理中有前景的治疗靶点,也为其在BPH治疗策略中的临床应用建立了坚实的理论基础。