Suppr超能文献

统一微波、光学和自由电子领域的频率计量。

Unifying frequency metrology across microwave, optical, and free-electron domains.

作者信息

Yang Yujia, Cattaneo Paolo, Raja Arslan S, Weaver Bruce, Wang Rui Ning, Sapozhnik Alexey, Carbone Fabrizio, LaGrange Thomas, Kippenberg Tobias J

机构信息

Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.

Center for Quantum Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Nat Commun. 2025 Sep 24;16(1):8369. doi: 10.1038/s41467-025-62808-5.

Abstract

Frequency metrology lies at the heart of precision measurement. Optical frequency combs provide a coherent link uniting the microwave and optical domains in the electromagnetic spectrum, with profound implications in timekeeping, sensing and spectroscopy, fundamental physics tests, exoplanet searches, and light detection and ranging. Here, we extend this frequency link to free electrons by coherent modulation of the electron phase by a continuous-wave laser locked to a fully stabilized optical frequency comb. Microwave frequency standards are transferred to the optical domain via the frequency comb, and are further imprinted in the electron spectrum by optically modulating the electron phase with a photonic chip-based microresonator. As a proof-of-concept demonstration, we apply this frequency link in the calibration of an electron spectrometer and verify its precision by measuring the absolute optical frequency. This approach achieves a 20-fold improvement in the accuracy of electron spectroscopy, relevant for investigating low-energy excitations in quantum materials, two-dimensional materials, nanophotonics, and quantum optics. Our work bridges frequency domains differed by a factor of  ~ 10 and carried by different physical objects, establishes a spectroscopic connection between electromagnetic waves and free-electron matter waves, and has direct ramifications in ultrahigh-precision electron spectroscopy.

摘要

频率计量是精密测量的核心。光学频率梳提供了一个连贯的链路,将电磁频谱中的微波和光学领域连接起来,在计时、传感与光谱学、基础物理测试、系外行星搜索以及光探测与测距等方面具有深远意义。在此,我们通过将连续波激光锁定到完全稳定的光学频率梳上对电子相位进行相干调制,将这种频率链路扩展到自由电子。微波频率标准通过频率梳转移到光学领域,并通过基于光子芯片的微谐振器对电子相位进行光学调制,进一步印刻在电子频谱中。作为概念验证演示,我们将这种频率链路应用于电子光谱仪的校准,并通过测量绝对光学频率来验证其精度。这种方法使电子光谱学的精度提高了20倍,这对于研究量子材料、二维材料、纳米光子学和量子光学中的低能激发具有重要意义。我们的工作跨越了由不同物理对象承载且相差约10倍的频率域,在电磁波和自由电子物质波之间建立了光谱联系,并对超高精度电子光谱学产生了直接影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff8/12460813/2d1c505cd77c/41467_2025_62808_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验