Feist Armin, Huang Guanhao, Arend Germaine, Yang Yujia, Henke Jan-Wilke, Raja Arslan Sajid, Kappert F Jasmin, Wang Rui Ning, Lourenço-Martins Hugo, Qiu Zheru, Liu Junqiu, Kfir Ofer, Kippenberg Tobias J, Ropers Claus
Max Planck Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany.
4th Physical Institute - Solids and Nanostructures, University of Göttingen, D-37077 Göttingen, Germany.
Science. 2022 Aug 12;377(6607):777-780. doi: 10.1126/science.abo5037. Epub 2022 Aug 11.
Quantum information, communication, and sensing rely on the generation and control of quantum correlations in complementary degrees of freedom. Free electrons coupled to photonics promise novel hybrid quantum technologies, although single-particle correlations and entanglement have yet to be shown. In this work, we demonstrate the preparation of electron-photon pair states using the phase-matched interaction of free electrons with the evanescent vacuum field of a photonic chip-based optical microresonator. Spontaneous inelastic scattering produces intracavity photons coincident with energy-shifted electrons, which we employ for noise-suppressed optical mode imaging. This parametric pair-state preparation will underpin the future development of free-electron quantum optics, providing a route to quantum-enhanced imaging, electron-photon entanglement, and heralded single-electron and Fock-state photon sources.
量子信息、通信和传感依赖于在互补自由度中量子关联的产生与控制。耦合到光子学的自由电子有望带来新型混合量子技术,尽管单粒子关联和纠缠尚未得到证实。在这项工作中,我们展示了利用自由电子与基于光子芯片的光学微谐振器的倏逝真空场的相位匹配相互作用来制备电子 - 光子对态。自发非弹性散射产生与能量偏移电子同时出现的腔内光子,我们将其用于噪声抑制光学模式成像。这种参数化对态制备将为自由电子量子光学的未来发展奠定基础,为量子增强成像、电子 - 光子纠缠以及预示单电子和福克态光子源提供一条途径。