Suppr超能文献

一种用于动态分布式发电优化和最优馈线重构的新型混合多算子进化算法。

A novel hybrid multi operator evolutionary algorithm for dynamic distributed generation optimization and optimal feeder reconfiguration.

作者信息

Ali Aamir, Saand Abdul Sattar, Ali Shoaib, Siddiqui Rizwan A, Koondhar Mohsin Ali, Albasha Lutfi, Alsaif Faisal

机构信息

Department of Electrical Engineering, Quaid-E-Awam University of Engineering Science and Technology, Nawabshah, 67450, Sindh, Pakistan.

Department of Electrical Engineering, American University of Sharjah, PO Box 26666, Sharjah, United Arab Emirates.

出版信息

Sci Rep. 2025 Sep 24;15(1):32715. doi: 10.1038/s41598-025-17776-7.

Abstract

This study addresses the integration of distributed generations (DG) and network reconfiguration in distribution networks, that has not been thoroughly investigated in prior research. The importance of technical objectives, such as power loss, voltage deviation, and voltage stability index, is emphasized in improving distribution network planning and operation. The study investigates the impact of changing sun irradiation and load demand on the IEEE 33 and 69-bus test systems. The issue at hand pertains to a mixed integer non-linear configuration, and four distinct research cases have been constructed in order to address and resolve it. Traditional evolutionary algorithms (EAs) are effective for such problems, but the study notes that using a single operator can limit performance. Hence, an innovative approach combines genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) to tackle multiperiod large-scale DG and network reconfiguration issues. Dealing with infeasible solutions during optimization poses a challenge, so penalty functions are often used in the literature. The penalty function can be limited by the selection of the penalty parameter, however; a large value of this parameter slows down the process, but a smaller value is stuck in infeasible space. Therefore, in the proposed hybrid method representative constraint handling techniques are incorporated to make a trade-off between exploration and exploitation. The simulation results illustrate the capability of the suggested strategy to converge towards the global optimal solution. Furthermore, taking into account the voltage stability index greatly improves the loading capacity as compared to the base situation. The hybrid multi-operator EA suggested in this study demonstrates a nearly global optimal solution for large-scale mixed integer non-linear problems, as evidenced by the comparison of simulation results with existing EAs. Moreover, the results demonstrate a substantial decrease in power loss by over 86%, a significant improvement in voltage deviation by more than 90%, and an increase in load capacity by over 700% through the effective integration of DGs with the voltage stability index as the objective function.

摘要

本研究探讨了分布式发电(DG)与配电网网络重构的整合问题,这在以往的研究中尚未得到充分调查。在改善配电网规划和运行方面,强调了诸如功率损耗、电压偏差和电压稳定指标等技术目标的重要性。该研究调查了太阳辐射变化和负荷需求对IEEE 33和69节点测试系统的影响。手头的问题涉及混合整数非线性配置,为了解决该问题构建了四个不同的研究案例。传统的进化算法(EA)对于此类问题是有效的,但该研究指出,使用单一算子可能会限制性能。因此,一种创新方法将遗传算法(GA)、差分进化(DE)和粒子群优化(PSO)结合起来,以解决多时段大规模DG和网络重构问题。在优化过程中处理不可行解是一项挑战,因此文献中经常使用惩罚函数。然而,惩罚函数可能会受到惩罚参数选择的限制;该参数值过大,会减缓过程,但值过小则会陷入不可行空间。因此,在所提出的混合方法中纳入了具有代表性的约束处理技术,以便在探索和利用之间进行权衡。仿真结果说明了所建议策略收敛到全局最优解的能力。此外,与基础情况相比,考虑电压稳定指标极大地提高了负荷承载能力。本研究中提出的混合多算子EA针对大规模混合整数非线性问题展示了近乎全局最优的解决方案,仿真结果与现有EA的比较证明了这一点。此外,结果表明,通过将分布式电源与电压稳定指标有效整合作为目标函数,功率损耗大幅降低了86%以上,电压偏差显著改善了90%以上,负荷承载能力提高了700%以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d978/12460802/090269b93cd2/41598_2025_17776_Fig1_HTML.jpg

相似文献

8
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验