Suppr超能文献

由一种应激激素驱动的双层次能量通量系统优先保障心脏能量供应。

A two-strata energy flux system driven by a stress hormone prioritizes cardiac energetics.

作者信息

Rao Zhiheng, Chen Zhichao, Bao Yuxuan, Lu Zhenzhen, Tang Yuli, Zhu Jiamei, Ma Jianjia, Dong Siyang, Shi Jiawei, Sheng Suhui, Chen Yajing, Wang Jiaojiao, Mukondiwa Alan Vengai, Li Ziyue, Wang Xulan, Huang Zibo, Li Chi, Ding Wumengwei, Chen Mengjie, Han Ziyi, Wang Cong, Pan Xuebo, Wang Xiaojie, Zhu Hong, Lin Li, Huang Zhifeng, Lu Weiqin, Li Xiaokun, Luo Yongde

机构信息

School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.

The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.

出版信息

Signal Transduct Target Ther. 2025 Sep 26;10(1):315. doi: 10.1038/s41392-025-02402-9.

Abstract

The heart, an organ with a continuously high demand for energy, inherently lacks substantial reserves. The precise mechanisms that prioritize energy allocation to cardiac mitochondria, ensuring steady-state ATP production amidst high-energy organs, remain poorly understood. Our study sheds light on this process by identifying a two-strata flux system driven by the starvation hormone FGF21. We demonstrate that systemic disruptions in interorgan metabolite mobilization and transcardiac flux, arising from either adipose lipolysis or hepatic ketogenesis due to FGF21 deficiency, directly impair cardiac energetic performance. Locally, this impairment is linked to compromised intracardiac utilization of various metabolites via ketolysis and oxidation pathways, along with hindered mitochondrial biogenesis, TCA cycle, ETC flow, and OXPHOS. Consequently, the heart shifts to a hypometabolic, glycolytic, and hypoenergy state, with a reduced capacity to cope with physiological stressors such as fasting, starvation, strenuous exercise, endurance training, and cold exposure, leading to a diminished heart rate, contractility, and hemodynamic stability. Pharmacological or genetic restoration of FGF21 ameliorates these defects, reenergizing stress-exhausted hearts. This hierarchical energy-prioritizing mechanism is orchestrated by the LKB1-AMPK-mTOR energy stress response pathways. Disrupting cardiac LKB1 or mTOR pathways, akin to stalling mitochondrial energy conduits, obstructs the FGF21-governed cardiac energetic potential. Our findings reveal an essential two-strata energy flux system critical for cardiac energetic efficiency regulated by FGF21, which spatiotemporally optimizes interorgan and transcardiac metabolite flux and intracardiac mitochondrial energy sufficiency. This discovery informs the design of strategies for treating cardiac diseases linked to mitochondrial or energy deficiencies.

摘要

心脏作为一个对能量需求持续很高的器官,自身缺乏大量储备。在高能量需求的器官中,将能量分配优先提供给心脏线粒体以确保稳态ATP生成的精确机制,仍知之甚少。我们的研究通过识别由饥饿激素FGF21驱动的两层通量系统,揭示了这一过程。我们证明,由于FGF21缺乏导致的脂肪分解或肝脏生酮作用引起的器官间代谢物动员和跨心脏通量的系统性破坏,直接损害心脏的能量代谢性能。在局部,这种损害与通过酮解和氧化途径对各种代谢物的心脏内利用受损有关,同时线粒体生物发生、三羧酸循环、电子传递链流动和氧化磷酸化也受到阻碍。因此,心脏转变为低代谢、糖酵解和低能量状态,应对诸如禁食、饥饿、剧烈运动、耐力训练和寒冷暴露等生理应激源的能力降低,导致心率、收缩力和血流动力学稳定性下降。FGF21的药理学或基因恢复可改善这些缺陷,使应激疲惫的心脏恢复能量。这种分级能量优先机制由LKB1-AMPK-mTOR能量应激反应途径协调。破坏心脏的LKB1或mTOR途径,类似于使线粒体能量管道停滞,会阻碍FGF21调控的心脏能量潜力。我们的研究结果揭示了一个由FGF21调节的对心脏能量效率至关重要的基本两层能量通量系统,该系统在时空上优化了器官间和跨心脏的代谢物通量以及心脏内线粒体的能量充足性。这一发现为治疗与线粒体或能量缺乏相关的心脏病的策略设计提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd9/12464335/f5d93dcdc38d/41392_2025_2402_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验