Sun Qiuyu, Karwi Qutuba G, Wong Nathan, Lopaschuk Gary D
Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada.
Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada.
Cardiovasc Res. 2024 Dec 14;120(16):1996-2016. doi: 10.1093/cvr/cvae231.
The very high energy demand of the heart is primarily met by adenosine triphosphate (ATP) production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure [including heart failure with reduced ejection fraction (HFrEF), heart failure with preserved EF (HFpEF), and diabetic cardiomyopathies] is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signalling and post-translational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
心脏对能量的需求非常高,主要通过线粒体氧化磷酸化产生三磷酸腺苷(ATP)来满足,糖酵解产生的ATP量较少。在心力衰竭时,这种ATP的产生会发生显著改变,主要是由于线粒体氧化代谢减少。尽管糖酵解产生的ATP增加在一定程度上补偿了线粒体ATP产生的减少,但衰竭的心脏仍面临能量不足,这导致了收缩功能障碍的严重程度增加。在衰竭的心脏中,用于线粒体ATP产生的不同燃料的相对贡献发生了巨大变化,这在很大程度上取决于心力衰竭的类型。所有形式的心力衰竭[包括射血分数降低的心力衰竭(HFrEF)、射血分数保留的心力衰竭(HFpEF)和糖尿病性心肌病]的一个共同代谢缺陷是源自葡萄糖的丙酮酸的线粒体氧化减少(即葡萄糖氧化减少)。无论糖酵解是否增加,葡萄糖氧化都会减少,导致糖酵解与葡萄糖氧化解偶联,从而降低心脏效率。心脏对脂肪酸的线粒体氧化增加或减少,这取决于心力衰竭的类型。例如,在HFpEF和糖尿病性心肌病中,心肌脂肪酸氧化增加,而在HFrEF中,心肌脂肪酸氧化要么减少,要么保持不变。酮体的氧化(为衰竭的心脏提供重要的能量来源)也因心力衰竭的类型而异,在HFrEF中增加,而在HFpEF和糖尿病性心肌病中减少。衰竭心脏中线粒体氧化代谢和糖酵解的改变是由于代谢途径中关键酶的转录变化,以及氧化还原状态、代谢信号传导和能量代谢酶的翻译后表观遗传变化。重要的是,靶向线粒体能量代谢途径已成为一种改善衰竭心脏心脏功能和心脏效率的新型治疗方法。