Ye Huajuan, Chen Jinfa, Lv Xianfeng, Wu Wenxin, Qiu Zhenli, He Jingyue, Fan Dage, Li Ning, Han Bin, Zhuang Junyang
Fujian Provincial Key Laboratory of Nano Biomedical Technology, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
School of Public Health & The Center of Laboratory, Fujian Medical University, Fuzhou 350122, China.
ACS Appl Mater Interfaces. 2025 Oct 8;17(40):55994-56005. doi: 10.1021/acsami.5c15876. Epub 2025 Sep 26.
The development of photoelectrochemical (PEC) biosensors with enhanced sensitivity and structural simplicity remains a key challenge in biomolecular detection. In this work, we report an unexpected and previously overlooked phenomenon in which DNA aptamers inherently act as amplifiers of PEC signals at semiconductor interfaces. Traditionally regarded solely as passive recognition elements, DNA aptamers─exemplified by the EpCAM-specific SYL3C─were found to markedly increase photocurrent when assembled on graphitic carbon nitride (g-CN)-based PEC electrodes. To further enhance interfacial charge transfer, g-CN was covalently functionalized with 1,3,5-benzenetricarboxaldehyde (BTA), forming a donor-acceptor structured semiconductor (g-CN-BTA). Density functional theory (DFT) calculations and Mott-Schottky analysis revealed that the lowest unoccupied molecular orbital (LUMO) levels of DNA bases are positioned above the conduction band (CB) edges of both g-CN and g-CN-BTA, enabling thermodynamically favorable injection of photoexcited electrons from DNA molecules into the semiconductor CB. This interfacial electron injection, analogous to dye-sensitized solar cells, accounts for the observed PEC signal amplification. Based on this mechanistic understanding, we developed a SYL3C/AuNPs/chitosan/g-CN-BTA-modified electrode for ultrasensitive detection of EpCAM-positive exosomes, achieving a detection limit of 988 particles mL. Furthermore, the sensor demonstrated robust performance in monitoring phenotypic changes of exosomes secreted by HepG2 cells in response to chemotherapy drug treatment, highlighting its potential for functional exosome analysis in cancer research. This study not only identifies a previously unrecognized inherent property of DNA aptamers to enhance semiconductor photoactivity, but also establishes a minimalist and broadly applicable design principle for constructing high-performance PEC biosensors. The mechanistic insights presented here open new avenues for the rational design of PEC sensing interfaces and extend the utility of DNA aptamers beyond molecular recognition toward active signal amplification.
开发具有更高灵敏度和结构简单性的光电化学(PEC)生物传感器仍然是生物分子检测中的一项关键挑战。在这项工作中,我们报告了一种意外且先前被忽视的现象,即DNA适配体在半导体界面上固有地充当PEC信号的放大器。传统上仅被视为被动识别元件的DNA适配体(以EpCAM特异性的SYL3C为例),在组装到基于石墨氮化碳(g-CN)的PEC电极上时,被发现能显著增加光电流。为了进一步增强界面电荷转移,g-CN用1,3,5-苯三甲醛(BTA)进行共价功能化,形成供体-受体结构的半导体(g-CN-BTA)。密度泛函理论(DFT)计算和莫特-肖特基分析表明,DNA碱基的最低未占据分子轨道(LUMO)能级位于g-CN和g-CN-BTA的导带(CB)边缘之上,使得光激发电子能够从DNA分子向半导体CB进行热力学上有利的注入。这种类似于染料敏化太阳能电池的界面电子注入解释了观察到的PEC信号放大现象。基于这种机理理解,我们开发了一种用于超灵敏检测EpCAM阳性外泌体的SYL3C/金纳米颗粒/壳聚糖/g-CN-BTA修饰电极,检测限达到988个颗粒/毫升。此外,该传感器在监测HepG2细胞分泌的外泌体对化疗药物治疗的表型变化方面表现出强大的性能,突出了其在癌症研究中进行功能性外泌体分析的潜力。这项研究不仅发现了DNA适配体增强半导体光活性这一先前未被认识的固有特性,还建立了一种简约且广泛适用的设计原则来构建高性能的PEC生物传感器。这里提出的机理见解为PEC传感界面的合理设计开辟了新途径,并将DNA适配体的用途从分子识别扩展到主动信号放大。