Köllen Martin F, Schuh Maximilian G, Kretschmer Robin, Hesse Joshua, Schum Dominik, Chen Junhong, Bohne Annkathrin I, Halter Dominik P, Sieber Stephan A
TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Technical University of Munich, 85748 Garching bei München, Germany.
TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center (CRC), Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, 85748 Garching bei München, Germany.
JACS Au. 2025 Sep 9;5(9):4249-4259. doi: 10.1021/jacsau.5c00602. eCollection 2025 Sep 22.
The escalating crisis of multiresistant bacteria demands the rapid discovery of novel antibiotics that transcend the limitations imposed by the biased chemical space of current libraries. To address this challenge, we introduce an innovative deep learning-driven pipeline for antibiotic design. Our unique approach leverages a chemical language model to generate structurally unprecedented antibiotic candidates. The model was trained on a diverse chemical space of drug-like molecules and natural products. We then applied transfer learning using a data set of diverse antibiotic scaffolds to refine its generative capabilities. Using predictive modeling and expert curation, we prioritized the most promising compounds for synthesis. This pipeline identified a lead candidate with potent activity against methicillin-resistant . We then performed iterative refinement by synthesizing 40 derivatives of the lead compound. This effort produced a suite of active compounds, with 30 showing activity against and 17 against . Among these, lead compound exhibited remarkable submicromolar and single-digit micromolar potency against the aforementioned pathogens, respectively. Mechanistic investigations point to the reductive generation of reactive species as its primary mode of action. This work validates a deep-learning pipeline that explores chemical space to generate antibiotic candidates. This process yields a potent nitrofuran derivative and a set of experimentally validated scaffolds to seed future antibiotic development.
多重耐药细菌危机的不断升级,要求迅速发现新型抗生素,以突破当前文库中化学空间偏倚所带来的限制。为应对这一挑战,我们引入了一种创新的深度学习驱动的抗生素设计流程。我们独特的方法利用化学语言模型生成结构上史无前例的抗生素候选物。该模型在类药物分子和天然产物的多样化化学空间上进行训练。然后,我们使用不同抗生素支架的数据集进行迁移学习,以完善其生成能力。通过预测建模和专家筛选,我们对最有希望合成的化合物进行了优先级排序。该流程确定了一种对耐甲氧西林菌具有强效活性的先导候选物。然后,我们通过合成该先导化合物的40种衍生物进行迭代优化。这项工作产生了一系列活性化合物,其中30种对……显示出活性,17种对……显示出活性。其中,先导化合物……分别对上述病原体表现出显著的亚微摩尔和个位数微摩尔效力。机理研究表明,活性物种的还原生成是其主要作用模式。这项工作验证了一种深度学习流程,该流程通过探索化学空间来生成抗生素候选物。这一过程产生了一种强效硝基呋喃衍生物和一组经过实验验证的支架,为未来的抗生素开发奠定了基础。