Khodadadi Ehsan, Khodadadi Ehsaneh, Chaturvedi Parth, Moradi Mahmoud
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
Membranes (Basel). 2025 Aug 29;15(9):259. doi: 10.3390/membranes15090259.
Liposomes are nanoscale, spherical vesicles composed of phospholipid bilayers, typically ranging from 50 to 200 nm in diameter. Their unique ability to encapsulate both hydrophilic and hydrophobic molecules makes them powerful nanocarriers for drug delivery, diagnostics, and vaccine formulations. Several FDA-approved formulations such as Doxil (Baxter Healthcare Corporation, Deerfield, IL, USA), AmBisome (Gilead Sciences, Inc., Foster City, CA, USA), and Onivyde (Ipsen Biopharmaceuticals, Inc., Basking Ridge, NJ, USA) highlight their clinical significance. This review provides a comprehensive synthesis of how molecular dynamics (MD) simulations, particularly coarse-grained (CG) and atomistic approaches, advance our understanding of liposomal membranes. We explore key membrane biophysical properties, including area per lipid (APL), bilayer thickness, segmental order parameter (SCD), radial distribution functions (RDFs), bending modulus, and flip-flop dynamics, and examine how these are modulated by cholesterol concentration, PEGylation, and curvature. Special attention is given to curvature-induced effects in spherical vesicles, such as lipid asymmetry, interleaflet coupling, and stress gradients across the leaflets. We discuss recent developments in vesicle modeling using tools such as TS2CG, CHARMM-GUI Martini Maker, and Packmol, which have enabled the simulation of large-scale, compositionally heterogeneous systems. The review also highlights simulation-guided strategies for designing stealth liposomes, tuning membrane permeability, and enhancing structural stability under physiological conditions. A range of CG force fields, MARTINI, SPICA, SIRAH, ELBA, SDK, as well as emerging machine learning (ML)-based models, are critically assessed for their strengths and limitations. Despite the efficiency of CG models, challenges remain in capturing long-timescale events and atomistic-level interactions, driving the development of hybrid multiscale frameworks and AI-integrated techniques. By bridging experimental findings with in silico insights, MD simulations continue to play a pivotal role in the rational design of next-generation liposomal therapeutics.
脂质体是由磷脂双层组成的纳米级球形囊泡,直径通常在50到200纳米之间。它们独特的能够包裹亲水性和疏水性分子的能力,使其成为药物递送、诊断和疫苗制剂的强大纳米载体。几种已获美国食品药品监督管理局(FDA)批准的制剂,如多柔比星脂质体(Doxil,美国百特医疗保健公司,伊利诺伊州迪尔菲尔德)、两性霉素B脂质体(AmBisome,美国吉利德科学公司,加利福尼亚州福斯特城)和伊立替康脂质体(Onivyde,美国益普生生物制药公司,新泽西州巴斯金里奇),突出了它们的临床意义。本综述全面综合了分子动力学(MD)模拟,特别是粗粒度(CG)和原子水平方法,如何推进我们对脂质体膜的理解。我们探讨了关键的膜生物物理性质,包括每脂质面积(APL)、双层厚度、链段序参数(SCD)、径向分布函数(RDF)、弯曲模量和翻转动力学,并研究这些性质如何受到胆固醇浓度、聚乙二醇化和曲率的调节。特别关注球形囊泡中曲率诱导的效应,如脂质不对称、层间耦合和跨层的应力梯度。我们讨论了使用TS2CG、CHARMM-GUI Martini Maker和Packmol等工具进行囊泡建模的最新进展,这些工具能够模拟大规模、成分异质的系统。该综述还强调了模拟指导的策略,用于设计隐形脂质体、调节膜通透性以及在生理条件下增强结构稳定性。对一系列CG力场,如MARTINI、SPICA、SIRAH、ELBA、SDK,以及新兴的基于机器学习(ML)的模型,进行了优缺点的批判性评估。尽管CG模型效率高,但在捕捉长时间尺度事件和原子水平相互作用方面仍存在挑战,这推动了混合多尺度框架和人工智能集成技术的发展。通过将实验结果与计算机模拟见解相结合,MD模拟在下一代脂质体疗法的合理设计中继续发挥关键作用。