Suppr超能文献

基于共价有机框架的纳米膜与共固定化双酶用于微污染物去除

Covalent Organic Framework-Based Nanomembrane with Co-Immobilized Dual Enzymes for Micropollutant Removal.

作者信息

Zhao Junda, Liu Guanhua, Zheng Xiaobing, Zhou Liya, Ma Li, He Ying, Yue Xiaoyang, Jiang Yanjun

机构信息

Arizona College of Technology, Hebei University of Technology, Tianjin 300401, China.

School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China.

出版信息

Nanomaterials (Basel). 2025 Sep 18;15(18):1431. doi: 10.3390/nano15181431.

Abstract

Biocatalytic nanomembranes have emerged as promising platforms for micropollutant remediation, yet their practical application is hindered by limitations in removal efficiency and operational stability. This study presents an innovative approach for fabricating highly stable and efficient biocatalytic nanomembranes through the co-immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOx) within a covalent organic framework (COF) nanocrystal. Capitalizing on the dynamic covalent chemistry of COFs during their self-healing and self-crystallization processes, we achieved simultaneous enzyme immobilization and framework formation. This unique confinement strategy preserved enzymatic activity while significantly enhancing stability. HRP/GOx@COF biocatalytic membrane was prepared through the loading of immobilized enzymes (HRP/GOx@COF) onto a macroporous polymeric substrate membrane pre-coated with a polydopamine (PDA) adhesive layer. At HRP and GOx dosages of 4 mg and 4.5 mg, respectively, and a glucose concentration of 5 mM, the removal rate of bisphenol A (BPA) reached 99% through the combined functions of catalysis, adsorption, and rejection. The BPA removal rate of the biocatalytic membrane remained high under both acidic and alkaline conditions. Additionally, the removal rate of dyes with different properties exceeded 88%. The removal efficiencies of doxycycline hydrochloride, 2,4-dichlorophenol, and 8-hydroxyquinoline surpassed 95%. In this study, the enzyme was confined in the ordered and stable COF, which endowed the biocatalytic membrane with good stability and reusability over multiple batch cycles.

摘要

生物催化纳米膜已成为用于微污染物修复的有前景的平台,但其实际应用受到去除效率和操作稳定性方面的限制。本研究提出了一种创新方法,通过将辣根过氧化物酶(HRP)和葡萄糖氧化酶(GOx)共固定在共价有机框架(COF)纳米晶体内来制备高度稳定且高效的生物催化纳米膜。利用COF在其自愈和自结晶过程中的动态共价化学,我们实现了酶的同时固定化和框架形成。这种独特的限制策略在显著提高稳定性的同时保留了酶活性。通过将固定化酶(HRP/GOx@COF)负载到预先涂覆有聚多巴胺(PDA)粘附层的大孔聚合物基底膜上,制备了HRP/GOx@COF生物催化膜。在HRP和GOx的剂量分别为4mg和4.5mg且葡萄糖浓度为5mM的情况下,通过催化、吸附和截留的联合作用,双酚A(BPA)的去除率达到99%。生物催化膜在酸性和碱性条件下的BPA去除率均保持较高。此外,对不同性质染料的去除率超过88%。盐酸多西环素、2,4-二氯苯酚和8-羟基喹啉的去除效率超过95%。在本研究中,酶被限制在有序且稳定的COF中,这赋予了生物催化膜良好的稳定性和在多个批次循环中的可重复使用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/370e/12472217/884028ad0f02/nanomaterials-15-01431-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验