Dang Andrew, Cerkvenik Uroš, Ilić Marko, Pirih Primož, Debevc Eva, Briscoe Adriana D, Belušič Gregor
Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA.
Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2025 Sep 26. doi: 10.1007/s00359-025-01761-6.
Compound eyes deliver a vast stream of information to the tiny insect brains. To maximize the information content and minimize the redundancy of neural signals, insect eyes are built so to encode the relevant and filter out the unimportant elements of the visual environment. Terrestrial habitats have a predictable spatio-spectral structure, which can be matched by the distribution of photoreceptors with different spectral sensitivities across the retina. Here, we investigate the retinal organization of the nymphalid butterfly Heliconius melpomene using single-cell recordings, immunohistochemistry and eye shine imaging. The ventral retina is enriched with ommatidia, which contain red screening pigments that shape the spectral sensitivity of basal red receptors R9, while their long visual fibre photoreceptors R1&2, expressing a long-wavelength (L) opsin, are synaptically inhibited by R9 and directly participate in colour vision. These G + R- receptors frequently co-express the L opsin with the blue (B) or ultraviolet (U) opsin. U&L opsin-co-expressing R1&2 are scarce, while B&L co-expression is frequent in the ventral ommatidia and gradually diminishes towards the eye equator, where G + R- receptors express the L opsin only. In this region, G + R- receptors are further inhibited by blue-sensitive receptors. With electrophysiology matching immunohistochemistry, we reveal the fine tuning of spectral sensitivity of a single photoreceptor class across the dorso-ventral axis of the butterfly compound eye. Similar tuning is found in other nymphalid butterflies across the phylogeny, suggesting that this adaptation is ancestral and confers an advantage to those diurnal nymphalids, equipped with the cellular toolkit for colour vision in the red.
复眼向微小的昆虫大脑传递大量信息。为了最大化信息含量并最小化神经信号的冗余,昆虫的眼睛构造能够对视觉环境中的相关元素进行编码,并滤除不重要的元素。陆地栖息地具有可预测的空间光谱结构,这可以通过视网膜上具有不同光谱敏感性的光感受器的分布来匹配。在这里,我们使用单细胞记录、免疫组织化学和眼闪光成像技术研究了蛱蝶科蝴蝶美凤蝶的视网膜组织。腹侧视网膜富含小眼,其中含有红色筛选色素,这些色素塑造了基部红色感受器R9的光谱敏感性,而它们表达长波长(L)视蛋白的长视觉纤维光感受器R1&2则受到R9的突触抑制,并直接参与颜色视觉。这些G+R-感受器经常与蓝色(B)或紫外线(U)视蛋白共同表达L视蛋白。同时表达U和L视蛋白的R1&2很少见,而B和L的共同表达在腹侧小眼很常见,并朝着眼赤道逐渐减少,在眼赤道处G+R-感受器仅表达L视蛋白。在这个区域,G+R-感受器会受到对蓝色敏感的感受器的进一步抑制。通过将电生理学与免疫组织化学相结合,我们揭示了蝴蝶复眼背腹轴上单一光感受器类别的光谱敏感性的精细调节。在系统发育中的其他蛱蝶科蝴蝶中也发现了类似的调节,这表明这种适应性是祖传的,并且赋予了那些配备了红色颜色视觉细胞工具包的日间蛱蝶科蝴蝶一种优势。